All Title Author
Keywords Abstract

PLOS ONE  2014 

Structural and Biochemical Characterization of Human PR70 in Isolation and in Complex with the Scaffolding Subunit of Protein Phosphatase 2A

DOI: 10.1371/journal.pone.0101846

Full-Text   Cite this paper   Add to My Lib

Abstract:

Protein Phosphatase 2A (PP2A) is a major Ser/Thr phosphatase involved in the regulation of various cellular processes. PP2A assembles into diverse trimeric holoenzymes, which consist of a scaffolding (A) subunit, a catalytic (C) subunit and various regulatory (B) subunits. Here we report a 2.0 ? crystal structure of the free B’’/PR70 subunit and a SAXS model of an A/PR70 complex. The crystal structure of B’’/PR70 reveals a two domain elongated structure with two Ca2+ binding EF-hands. Furthermore, we have characterized the interaction of both binding partner and their calcium dependency using biophysical techniques. Ca2+ biophysical studies with Circular Dichroism showed that the two EF-hands display different affinities to Ca2+. In the absence of the catalytic C-subunit, the scaffolding A-subunit remains highly mobile and flexible even in the presence of the B’’/PR70 subunit as judged by SAXS. Isothermal Titration Calorimetry studies and SAXS data support that PR70 and the A-subunit have high affinity to each other. This study provides additional knowledge about the structural basis for the function of B’’ containing holoenzymes.

References

[1]  Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80: 225–236. doi: 10.1016/0092-8674(95)90405-0
[2]  Wurzenberger C, Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12: 469–482. doi: 10.1038/nrm3149
[3]  Sablina AA, Hector M, Colpaert N, Hahn WC (2010) Identification of PP2A complexes and pathways involved in cell transformation. Cancer Res 70: 10474–10484. doi: 10.1158/0008-5472.can-10-2855
[4]  Mumby MC, Walter G (1993) Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 73: 673–699.
[5]  Gallego M, Virshup DM (2005) Protein serine/threonine phosphatases: life, death, and sleeping. Curr Opin Cell Biol 17: 197–202. doi: 10.1016/j.ceb.2005.01.002
[6]  Lechward K, Awotunde OS, Swiatek W, Muszynska G (2001) Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim Pol 48: 921–933.
[7]  Janssens V, Longin S, Goris J (2008) PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends Biochem Sci 33: 113–121. doi: 10.1016/j.tibs.2007.12.004
[8]  Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V (2013) The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 280: 644–661. doi: 10.1111/j.1742-4658.2012.08579.x
[9]  Lambrecht C, Haesen D, Sents W, Ivanova E, Janssens V (2013) Structure, Regulation, and Pharmacological Modulation of PP2A Phosphatases. Methods Mol Biol 1053: 283–305. doi: 10.1007/978-1-62703-562-0_17
[10]  Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33: 537–545. doi: 10.1016/j.molcel.2009.02.015
[11]  Shi Y (2009) Assembly and structure of protein phosphatase 2A. Sci China C Life Sci 52: 135–146. doi: 10.1007/s11427-009-0018-3
[12]  Xing Y, Xu Y, Chen Y, Jeffrey PD, Chao Y, et al. (2006) Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127: 341–353. doi: 10.1016/j.cell.2006.09.025
[13]  Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, et al. (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127: 1239–1251. doi: 10.1016/j.cell.2006.11.033
[14]  Xu Y, Chen Y, Zhang P, Jeffrey PD, Shi Y (2008) Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell 31: 873–885. doi: 10.1016/j.molcel.2008.08.006
[15]  Wlodarchak N, Guo F, Satyshur KA, Jiang L, Jeffrey PD, et al. (2013) Structure of the Ca2+-dependent PP2A heterotrimer and insights into Cdc6 dephosphorylation. Cell Res 23: 931–946. doi: 10.1038/cr.2013.77
[16]  Cho US, Xu W (2007) Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445: 53–57. doi: 10.1038/nature05351
[17]  Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D (1999) The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96: 99–110. doi: 10.1016/s0092-8674(00)80963-0
[18]  Groves MR, Barford D (1999) Topological characteristics of helical repeat proteins. Curr Opin Struct Biol 9: 383–389. doi: 10.1016/s0959-440x(99)80052-9
[19]  Cho US, Morrone S, Sablina AA, Arroyo JD, Hahn WC, et al. (2007) Structural basis of PP2A inhibition by small t antigen. PLoS Biol 5: e202. doi: 10.1371/journal.pbio.0050202
[20]  Xu Z, Cetin B, Anger M, Cho US, Helmhart W, et al. (2009) Structure and function of the PP2A-shugoshin interaction. Mol Cell 35: 426–441. doi: 10.1016/j.molcel.2009.06.031
[21]  Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N (2010) PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci U S A 107: 2467–2472. doi: 10.1073/pnas.0914073107
[22]  Creyghton MP, Roel G, Eichhorn PJ, Vredeveld LC, Destree O, et al. (2006) PR130 is a modulator of the Wnt-signaling cascade that counters repression of the antagonist Naked cuticle. Proc Natl Acad Sci U S A 103: 5397–5402. doi: 10.1073/pnas.0507237103
[23]  Creyghton MP, Roel G, Eichhorn PJ, Hijmans EM, Maurer I, et al. (2005) PR72, a novel regulator of Wnt signaling required for Naked cuticle function. Genes Dev 19: 376–386. doi: 10.1101/gad.328905
[24]  Ahn JH, Sung JY, McAvoy T, Nishi A, Janssens V, et al. (2007) The B”/PR72 subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein phosphatase 2A. Proc Natl Acad Sci U S A 104: 9876–9881. doi: 10.1073/pnas.0703589104
[25]  Magenta A, Fasanaro P, Romani S, Di Stefano V, Capogrossi MC, et al. (2008) Protein phosphatase 2A subunit PR70 interacts with pRb and mediates its dephosphorylation. Mol Cell Biol 28: 873–882. doi: 10.1128/mcb.00480-07
[26]  Yan Z, Fedorov SA, Mumby MC, Williams RS (2000) PR48, a novel regulatory subunit of protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in human cells. Mol Cell Biol 20: 1021–1029. doi: 10.1128/mcb.20.3.1021-1029.2000
[27]  Davis AJ, Yan Z, Martinez B, Mumby MC (2008) Protein phosphatase 2A is targeted to cell division control protein 6 by a calcium-binding regulatory subunit. J Biol Chem 283: 16104–16114. doi: 10.1074/jbc.m710313200
[28]  Janssens V, Jordens J, Stevens I, Van Hoof C, Martens E, et al. (2003) Identification and functional analysis of two Ca2+-binding EF-hand motifs in the B”/PR72 subunit of protein phosphatase 2A. J Biol Chem 278: 10697–10706. doi: 10.1074/jbc.m211717200
[29]  Graslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, et al. (2008) Protein production and purification. Nat Methods 5: 135–146.
[30]  Graslund S, Sagemark J, Berglund H, Dahlgren LG, Flores A, et al. (2008) The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins. Protein Expr Purif 58: 210–221. doi: 10.1016/j.pep.2007.11.008
[31]  Strynadka NC, James MN (1989) Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 58: 951–998. doi: 10.1146/annurev.bi.58.070189.004511
[32]  Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405: 199–221. doi: 10.1042/bj20070255
[33]  Cook WJ, Jeffrey LC, Cox JA, Vijay-Kumar S (1993) Structure of a sarcoplasmic calcium-binding protein from amphioxus refined at 2.4 A resolution. J Mol Biol 229: 461–471. doi: 10.1006/jmbi.1993.1046
[34]  Vijay-Kumar S, Cook WJ (1992) Structure of a sarcoplasmic calcium-binding protein from Nereis diversicolor refined at 2.0 A resolution. J Mol Biol 224: 413–426. doi: 10.1016/0022-2836(92)91004-9
[35]  Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139: 468–484. doi: 10.1016/j.cell.2009.10.006
[36]  Zhou J, Pham HT, Ruediger R, Walter G (2003) Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: differences in expression, subunit interaction, and evolution. Biochem J 369: 387–398. doi: 10.1042/bj20021244
[37]  Tsutakawa SE, Van Wynsberghe AW, Freudenthal BD, Weinacht CP, Gakhar L, et al. (2011) Solution X-ray scattering combined with computational modeling reveals multiple conformations of covalently bound ubiquitin on PCNA. Proc Natl Acad Sci U S A 108: 17672–17677. doi: 10.1073/pnas.1110480108
[38]  Pelikan M, Hura GL, Hammel M (2009) Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 28: 174–189. doi: 10.4149/gpb_2009_02_174
[39]  Hura GL, Budworth H, Dyer KN, Rambo RP, Hammel M, et al. (2013) Comprehensive macromolecular conformations mapped by quantitative SAXS analyses. Nat Methods 10: 453–454. doi: 10.1038/nmeth.2453
[40]  Magnusdottir A, Stenmark P, Flodin S, Nyman T, Kotenyova T, et al. (2009) The structure of the PP2A regulatory subunit B56 gamma: the remaining piece of the PP2A jigsaw puzzle. Proteins 74: 212–221. doi: 10.1002/prot.22150
[41]  Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18: 6069–6074. doi: 10.1093/nar/18.20.6069
[42]  L?w C, Moberg P, Quistgaard EM, Hedren M, Guettou F, et al. (2013) High-throughput analytical gel filtration screening of integral membrane proteins for structural studies. Biochim Biophys Acta 1830: 3497–3508. doi: 10.1016/j.bbagen.2013.02.001
[43]  L?w C, Jegerschold C, Kovermann M, Moberg P, Nordlund P (2012) Optimisation of over-expression in E. coli and biophysical characterisation of human membrane protein synaptogyrin 1. PLoS One 7: e38244. doi: 10.1371/journal.pone.0038244
[44]  Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66: 125–132. doi: 10.1107/s0907444909047337
[45]  Terwilliger TC, Adams PD, Read RJ, McCoy AJ, Moriarty NW, et al. (2009) Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr D Biol Crystallogr 65: 582–601. doi: 10.1107/s0907444909012098
[46]  Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501. doi: 10.1107/s0907444910007493
[47]  Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221. doi: 10.1107/s0907444909052925
[48]  Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: 12–21. doi: 10.1107/s0907444909042073
[49]  Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545–549. doi: 10.1093/nar/gkq366
[50]  DeLano W (2003) The PyMOL Molecular Graphics System. DeLano Scientific LLC. Available: http://www.pymol.org. Accessed 2014 June 17.
[51]  Poornam GP, Matsumoto A, Ishida H, Hayward S (2009) A method for the analysis of domain movements in large biomolecular complexes. Proteins 76: 201–212. doi: 10.1002/prot.22339
[52]  Classen S, Hura GL, Holton JM, Rambo RP, Rodic I, et al. (2013) Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. J Appl Crystallogr 46: 1–13. doi: 10.1107/s0021889812048698
[53]  Classen S, Rodic I, Holton J, Hura GL, Hammel M, et al. (2010) Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system. J Synchrotron Radiat 17: 774–781. doi: 10.1107/s0909049510028566
[54]  Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL 2nd, et al. (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6: 606–612. doi: 10.1038/nmeth.1353
[55]  Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystall 36: 1277–1282. doi: 10.1107/s0021889803012779
[56]  Petoukhov MV, Konarev PV, Kikhney AG, Svergun DI (2007) ATSAS 2.1–towards automated and web-supported small-angle scattering data analysis. J Appl Crystall 40: 223–228. doi: 10.1107/s0021889807002853
[57]  Rambo RP, Tainer JA (2013) Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496: 477–481. doi: 10.1038/nature12070
[58]  Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A (2013) Accurate SAXS Profile Computation and its Assessment by Contrast Variation Experiments. Biophys J 105: 962–974. doi: 10.1016/j.bpj.2013.07.020
[59]  Schneidman-Duhovny D, Hammel M, Sali A (2010) FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 38: W540–544. doi: 10.1093/nar/gkq461

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal