全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms

DOI: 10.1371/journal.pone.0102367

Full-Text   Cite this paper   Add to My Lib

Abstract:

In lakes, trophic change and climate change shift the relationship between nutrients and physical factors, like temperature and photoperiod, and interactions between these factors should affect the growth of phytoplankton species differently. We therefore determined the relationship between P-limited specific growth rates and P-quota (biovolume basis) of Stephanodiscus minutulus and Nitzschia acicularis (diatoms) at or near light saturation in axenic, semi-continuous culture at 10, 15 and 20 °C and at 6, 9 and 12 h d?1 photoperiod. Photoperiod treatments were performed at constant daily light exposure to allow comparison. Under these conditions, we also performed competition experiments and estimated relative P-uptake rates of the species. Temperature strongly affected P-limited growth rates and relative P uptake rates, whereas photoperiod only affected maximum growth rates. S. minutulus used internal P more efficiently than N. acicularis. N. acicularis was the superior competitor for P due to a higher relative uptake rate and its superiority increased with increasing temperature and photoperiod. S. minutulus conformed to the Droop relationship but N. acicularis did not. A model with a temperature-dependent normalised half-saturation coefficient adequately described the factor interactions of both species. The temperature dependence of the quota model reflected each species’ specific adaptation to its ecological niche. The results demonstrate that increases in temperature or photoperiod can partially compensate for a decrease in P-quota under moderately limiting conditions, like during spring in temperate lakes. Thus warming may counteract de-eutrophication to some degree and a relative shift in growth factors can influence the phytoplankton species composition.

References

[1]  Jeppesen E, Sondergaard M, Jensen JP, Havens KE, Anneville O, et al. (2005) Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies. Freshwater Biol 50: 1747–1771. doi: 10.1111/j.1365-2427.2005.01415.x
[2]  Shatwell T, K?hler J, Nicklisch A (2008) Warming promotes cold-adapted phytoplankton in temperate lakes and opens a loophole for Oscillatoriales in spring. Global Change Biology 14: 2194–2200. doi: 10.1111/j.1365-2486.2008.01630.x
[3]  Kirillin G (2010) Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Environ Res 15: 279–293.
[4]  Rinke K, Yeates P, Rothhaupt KO (2010) A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshwater Biol 55: 1674–1693. doi: 10.1111/j.1365-2427.2010.02401.x
[5]  Jeppesen E, Moss B, Bennion H, Carvalho L, DeMeester L, et al.. (2010) Interaction of climate change and eutrophication. In: Kernan M, Battarbee R, Moss B, editors. Climate Change Impacts on Freshwater Ecosystems. Oxford, UK: Wiley-Blackwell. 119–151.
[6]  K?hler J, Hilt S, Adrian R, Nicklisch A, Kozerski HP, et al. (2005) Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshwater Biol 50: 1639–1650. doi: 10.1111/j.1365-2427.2005.01430.x
[7]  Kilham P, Kilham SS, Hecky RE (1986) Hypothesized resource relationships among African planktonic diatoms. Limnol Oceanogr 31: 1169–1181. doi: 10.4319/lo.1986.31.6.1169
[8]  Thompson P (1999) Response of growth and biochemical composition to variations in daylength, temperature, and irradiance in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 35: 1215–1223. doi: 10.1046/j.1529-8817.1999.3561215.x
[9]  Healey FP (1985) Interacting effects of light and nutrient limitation on the growth rate of Synechococcus linearis (Cyanophyceae). J Phycol 21: 134–146. doi: 10.1111/j.0022-3646.1985.00134.x
[10]  Foy RH, Gibson CE (1993) The influence of irradiance, photoperiod and temperature on the growth kinetics of three planktonic diatoms. Eur J Phycol 28: 203–212. doi: 10.1080/09670269300650311
[11]  Nicklisch A, Shatwell T, K?hler J (2008) Analysis and modelling of the interactive effects of temperature and light on phytoplankton growth and relevance for the spring bloom. J Plankton Res 30: 75–91. doi: 10.1093/plankt/fbm099
[12]  Rhee GY, Gotham IJ (1981) The effect of environmental factors on phytoplankton growth: Light and the interactions of light with nitrate limitation. Limnol Oceanogr 26: 649–659. doi: 10.4319/lo.1981.26.4.0649
[13]  Rhee GY, Gotham IJ (1981) The effect of environmental factors on phytoplankton growth: Temperature and the interactions of temperature with nutrient limitation. Limnol Oceanogr 26: 635–648. doi: 10.4319/lo.1981.26.4.0635
[14]  Ahlgren G (1988) Phosphorus as growth-regulating factor relative to other environmental factors in cultured algae. Hydrobiologia 170: 191–210. doi: 10.1007/bf00024905
[15]  Cembella AD, Antia NJ, Harrison PJ (1984) The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part 1. Crc Cr Rev Microbiol 10: 317–391. doi: 10.3109/10408418209113567
[16]  Goldman JC (1977) Temperature effects on phytoplankton growth in continuous culture. Limnol Oceanogr 22: 932–936. doi: 10.4319/lo.1977.22.5.0932
[17]  Riegman R, Stolte W, Noordeloos AAM, Slezak D (2000) Nutrient uptake and alkaline phosphatase (EC 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under N and P limitation in continuous cultures. J Phycol 36: 87–96. doi: 10.1046/j.1529-8817.2000.99023.x
[18]  Litchman E, Klausmeier CA, Bossard P (2004) Phytoplankton nutrient competition under dynamic light regimes. Limnol Oceanogr 49: 1457–1462. doi: 10.4319/lo.2004.49.4_part_2.1457
[19]  Dickman EM, Vanni MJ, Horgan MJ (2006) Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia 149: 676–689. doi: 10.1007/s00442-006-0473-5
[20]  Litchman E, Steiner D, Bossard P (2003) Photosynthetic and growth responses of three freshwater algae to phosphorus limitation and daylength. Freshwater Biol 48: 2141–2148. doi: 10.1046/j.1365-2427.2003.01157.x
[21]  Riegman R, Mur LR (1985) Effects of photoperiodicity and light irradiance on phosphate-limited Oscillatoria agardhii in chemostat cultures. 2. Phosphate uptake and growth. Arch Microbiol 142: 72–76. doi: 10.1007/bf00409240
[22]  Castenholz RW (1964) The effect of daylength and light intensity on the growth of littoral marine diatoms in culture. Physiol Plant 17: 951–963. doi: 10.1111/j.1399-3054.1964.tb08222.x
[23]  Paasche E (1968) Marine plankton algae grown with light-dark cycles. 2. Ditylum brightwellii and Nitzschia turgidula. Physiol Plant 21: 66–77. doi: 10.1111/j.1399-3054.1968.tb07231.x
[24]  Foy RH, Gibson CE, Smith RV (1976) The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. Br Phycol J 15: 151–163. doi: 10.1080/00071617600650181
[25]  Gibson CE, Foy RH (1983) The photosynthesis and growth efficiency of a planktonic blue-green alga, Oscillatoria redekei. Br Phycol J 18: 39–45. doi: 10.1080/00071618300650051
[26]  Droop MR (1968) Vitamin B12 and marine ecology. 4. Kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Mar Biol Assoc UK 48: 689–733. doi: 10.1017/s0025315400019238
[27]  Flynn KJ (2008) Use, abuse, misconceptions and insights from quota models - The Droop cell quota model 40 years on. Oceanogr Mar Biol 46: 1–23. doi: 10.1201/9781420065756.ch1
[28]  Klausmeier CA, Litchman E, Daufresne T, Levin SA (2008) Phytoplankton stoichiometry. Ecol Res 23: 479–485. doi: 10.1007/s11284-008-0470-8
[29]  Azad HS, Borchard JA (1970) Variations in phosphorus uptake by algae. Environ Sci Technol 4: 737–743. doi: 10.1021/es60044a008
[30]  Goldman JC (1979) Temperature effects on steady-state growth, phosphorus uptake, and the chemical composition of a marine phytoplankter. Microb Ecol 5: 153–166. doi: 10.1007/bf02013523
[31]  Cembella AD, Antia NJ, Harrison PJ (1984) The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: A multidisciplinary perspective: Part 2. Crc Cr Rev Microbiol 11: 13–81. doi: 10.3109/10408418409105902
[32]  Ahlgren G (1987) Temperature functions in biology and their application to algal growth constants. Oikos 49: 177–190. doi: 10.2307/3566025
[33]  Wernicke P, Nicklisch A (1986) Light/dark cycle and temperature - their impact on phosphate-limited growth of Oscillatoria redekei VAN GOOR in semicontinuous culture. Int Rev Gesamten Hydrobiol 71: 297–313. doi: 10.1002/iroh.19860710302
[34]  van Donk E, Kilham SS (1990) Temperature effects on silicon- and phosphorus-limited growth and competitive interactions among three diatoms. J Phycol 26: 40–50. doi: 10.1111/j.0022-3646.1990.00040.x
[35]  Flynn KJ (2008) The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models. J Plankton Res 30: 423–438. doi: 10.1093/plankt/fbn007
[36]  Kohl JG, Giersdorf K (1991) Competition ability of two planktic diatoms under different vertical light gradients, mixing-depth and -frequencies: An experimental approach. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 2652–2656.
[37]  Nicklisch A (1998) Growth and light absorption of some planktonic cyanobacteria, diatoms and Chlorophyceae under simulated natural light fluctuations. J Plankton Res 20: 105–119. doi: 10.1093/plankt/20.1.105
[38]  Shatwell T, Nicklisch A, K?hler J (2012) Temperature and photoperiod effects on phytoplankton growing under simulated mixed layer light fluctuations. Limnol Oceanogr 57: 541–553. doi: 10.4319/lo.2012.57.2.0541
[39]  Shatwell T, K?hler J, Nicklisch A (2013) Temperature and photoperiod interactions with silicon-limited growth and competition of two diatoms. J Plankton Res 35: 957–971. doi: 10.1093/plankt/fbt058
[40]  Roloff B, Nicklisch A (1993) Partitioning of phosphate between blue-green algae and their accompanying bacteria in phosphate-limited culture. Arch Hydrobiol 126: 405–416.
[41]  Falkner G, Wagner F, Small JV, Falkner R (1995) Influence of fluctuating phosphate supply on the regulation of phosphate uptake by the blue-green alga Anacystis nidulans. J Phycol 31: 745–753. doi: 10.1111/j.0022-3646.1995.00745.x
[42]  Healey FP (1980) Slope of the Monod equation as an indicator of advantage in nutrient competition. Microb Ecol 5: 281–286. doi: 10.1007/bf02020335
[43]  Nicklisch A (1999) Competition between the cyanobacterium Limnothrix redekei and some spring species of diatoms under P-limitation. International Review of Hydrobiology 84: 233–241.
[44]  Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8: 10–14. doi: 10.1111/j.0022-3646.1972.00010.x
[45]  Gibson CE (1987) Adaptations in Oscillatoria redekei at very slow growth rates - changes in growth efficiency and phycobilin complement. Br Phycol J 22: 187–191. doi: 10.1080/00071618700650231
[46]  DEV (2007) Deutsche Einheitsverfahren (DEV) zur Wasser-, Abwasser- und Schlammuntersuchung. Analytical standard DIN 38405, part 21. Weinheim: VCH Verlagsges. mbH, Beuth Verlag GmbH.
[47]  Nicklisch A, Steinberg CEW (2009) RNA/protein and RNA/DNA ratios determined by flow cytometry and their relationship to growth limitation of selected planktonic algae in culture. Eur J Phycol 44: 297–308. doi: 10.1080/09670260802578518
[48]  Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: Major developments during the past years in retrospect. Progress in Botany 54: 151–173. doi: 10.1007/978-3-642-78020-2_8
[49]  Fuhs GW (1969) Phosphorus content and rate of growth in the diatoms Cyclotella nana and Thalassiosira fluviatilis. J Phycol 5: 312–321. doi: 10.1111/j.1529-8817.1969.tb02620.x
[50]  Flynn KJ (2002) How critical is the critical N: P ratio? J Phycol 38: 961–970. doi: 10.1046/j.1529-8817.2002.t01-1-01235.x
[51]  Caperon J, Meyer J (1972) Nitrogen-limited growth of marine phytoplankton. 1. Changes in population characteristics with steady-state growth rate. Deep-Sea Research 19: 601–618. doi: 10.1016/0011-7471(72)90089-7
[52]  Bates DM, Watts DG (1988) Nonlinear Regression Analysis and Its Applications. New York: Wiley. 365 p.
[53]  Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach. New York: Springer-Verlag. 488 p.
[54]  R Core Team (2013) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
[55]  Soetaert K, Petzoldt T, Setzer RW (2010) Solving Differential Equations in R: Package deSolve. J Stat Softw 33 (9): 1–25.
[56]  Soetaert K, Petzoldt T (2010) Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME. J Stat Softw 33 (3): 1–28.
[57]  Button DK (1978) On the theory of control of microbial growth kinetics by limiting nutrient concentrations. Deep-Sea Research 25: 1163–1177. doi: 10.1016/0146-6291(78)90011-5
[58]  Lehman JT, Botkin DB, Likens GE (1975) The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnol Oceanogr 20: 343–364. doi: 10.4319/lo.1975.20.3.0343
[59]  Tilman D (1982) Resource Competition and Community Structure. Princeton, N.J.: Princeton University Press. 296 p.
[60]  Brown EJ, Button DK (1979) Phosphate-limited growth kinetics of Selenastrum capricornutum. J Phycol 15: 305–311. doi: 10.1111/j.1529-8817.1979.tb02643.x
[61]  Sterner RW (1995) Elemental stoichiometry of species in ecosystems. In: Jones CG, Lawton JH, editors. Linking Species and Ecosystems. New York: Chapman & Hall. 240–252.
[62]  Darley WM (1977) Biochemical composition. In: Werner D, editor. The Biology of Diatoms. London: Blackwell Scientific Publications. 198–223.
[63]  Sterner RW, Elser JJ (2002) Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton: Princeton University Press. 584 p.
[64]  Tempest DW, Hunter JR (1965) The influence of temperature and pH value on the macromolecular composition of magnesium-limited and glycerol-limited Aerobacter aerogenes growing in a chemostat. J Gen Microbiol 41: 267–273. doi: 10.1099/00221287-41-2-267
[65]  Klausmeier CA, Litchman E, Levin SA (2004) Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnol Oceanogr 49: 1463–1470. doi: 10.4319/lo.2004.49.4_part_2.1463
[66]  Giersdorf K (1988) Der Einfluβ von Licht und Temperatur auf das Wachstum der planktischen Diatomeen Stephanodiscus minutulus (Kütz.) Cleve & M?ller und Nitzschia acicularis W. Smith. Mathematisch-Naturwissenschaftliche Fakult?t. Berlin: Humboldt-Universit?t zu Berlin. 117.
[67]  Healey FP (1973) Characteristics of phosphorus deficiency in Anabaena. J Phycol 9: 383–394. doi: 10.1111/j.1529-8817.1973.tb04111.x
[68]  Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J Phycol 36: 510–522. doi: 10.1046/j.1529-8817.2000.98251.x
[69]  Olsen Y (1989) Evaluation of competitive ability of Staurastrum leutkemuellerii (Chlorophyceae) and Microcystis aeruginosa (Cyanophyceae) under P limitation. J Phycol 25: 486–499. doi: 10.1111/j.1529-8817.1989.tb00254.x
[70]  Andersen T (1997) Pelagic Nutrient Cycles: Herbivores as Sources and Sinks. Berlin: Springer-Verlag. 280 p.
[71]  Gotham IJ, Rhee GY (1981) Comparative kinetic studies of phosphate-limited growth and phosphate uptake in phytoplankton in continuous culture. J Phycol 17: 257–265. doi: 10.1111/j.1529-8817.1981.tb00848.x
[72]  Perry MJ (1976) Phosphate utilization by an oceanic diatom in phosphorus-limited chemostat culture and in oligotrophic waters of the central North Pacific. Limnol Oceanogr 21: 88–107. doi: 10.4319/lo.1976.21.1.0088
[73]  Grover JP (1989) Phosphorus-dependent growth kinetics of 11 species of freshwater algae. Limnol Oceanogr 34: 341–348. doi: 10.4319/lo.1989.34.2.0341
[74]  Ducobu H, Huisman J, Jonker RR, Mur LR (1998) Competition between a prochlorophyte and a cyanobacterium under various phosphorus regimes: Comparison with the Droop model. J Phycol 34: 467–476. doi: 10.1046/j.1529-8817.1998.340467.x
[75]  Sommer U (1994) The impact of light intensity and daylength on silicate and nitrate competition among marine phytoplankton. Limnol Oceanogr 39: 1680–1688. doi: 10.4319/lo.1994.39.7.1680

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133