全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Molecular Phylogeny of Weakfish Species of the Stellifer Group (Sciaenidae, Perciformes) of the Western South Atlantic Based on Mitochondrial and Nuclear Data

DOI: 10.1371/journal.pone.0102250

Full-Text   Cite this paper   Add to My Lib

Abstract:

The phylogenetic relationships within the Stellifer group of weakfishes (Stellifer, Odontoscion, Ophioscion, and Bairdiella) were evaluated using 2723 base pairs comprising sequences of nuclear (rhodopsin, TMO-4C4, RAG-1) and mitochondrial (16S rRNA and COI) markers obtained from specimens of nine species. Our results indicate a close relationship between Bairdiella and Odontoscion, and also that the genus Stellifer is not monophyletic, but rather that it consists of two distinct lineages, one clade containing S. microps/S. naso/S. brasiliensis and the other, S. rastrifer/S. stellifer/Stellifer sp. B, which is closer to Ophioscion than the former clade. The O. punctatissimus populations from the northern and southern Brazilian coast were also highly divergent in both nuclear (0.8% for rhodopsin and 0.9% for RAG-1) and mitochondrial sequences (2.2% for 16S rRNA and 7.3% for COI), which we conclude is consistent with the presence of two distinct species. The morphological similarities of the members of the Stellifer group is reinforced by the molecular data from both the present study and previous analyses, which have questioned the taxonomic status of the Stellifer group. If, on the one hand, the group is in fact composed of four genera (Stellifer, Ophioscion, Odontoscion, and Bairdiella), one of the two Stellifer clades should be reclassified as a new genus. However, if the close relationship and the reduced genetic divergence found within the group is confirmed in a more extensive study, including representatives of additional taxa, this, together with the morphological evidence, would support downgrading the whole group to a single genus. Obviously, these contradictory findings reinforce the need for a more systematic taxonomic revision of the Stellifer group as a whole.

References

[1]  Sasaki K (1989) Phylogeny of the family Sciaenidae with notes on its zoogeography (Teleostei, Perciformes). Memories of the Faculty of Fisheries of the Hokkaido University 36: 1–37.
[2]  Nelson JS (2006) Fishes of the world. New Jersey: John Wiley and Sons. 601 p.
[3]  Menezes NA, Figueiredo JL (1980) Manual de peixes marinhos do sudeste do Brasil, IV teleostei. S?o Paulo: Museu de Zoologia da Universidade de S?o Paulo. 96 p.
[4]  Cervigón F, Cipriani R, Fischer W, Garibaldi L, Hendrickx G, et al.. (1993) FAO species identification sheets for fishery purposes. Field guide to the commercial marine and brackish-water resources of the northern coast of South America. Rome: FAO. 513 p. + XL Plates.
[5]  Chao LN (1978) A basis for classifying western Atlantic Sciaenidae (Teleostei, Perciformes). NOAA. Technical Report Circular 415: 1–64.
[6]  Carvalho-Filho A (1999) Peixes: costa brasileira. S?o Paulo: Melro. 320 p.
[7]  Menezes NA, Buckup PA, Figueredo JL, Moura RL (2003) Catálogo das espécies de peixes marinhos do Brasil. S?o Paulo: Museu de Zoologia da Universidade de S?o Paulo. 159 p.
[8]  Barletta-Bergan A, Barletta M, Saint-Paul U (2002a) Structure and seasonal dynamics of larval fish in the Caeté river estuary in north Brazil. Estuar Coast Shelf Sci 54: 193–206.
[9]  Barletta-Bergan A, Barletta M, Saint-Paul U (2002b) Community structure and temporal variability of ichthyoplankton in north Brazilian mangrove creeks. J Fish Biol 61: 33–51.
[10]  Barlleta M, Barlleta-Bergan A, Saint-Paul U, Hubold G (2003) Seasonal changes in density, biomass, and diversity of estuarine fishes in tidal mangrove creeks of the lower Caeté estuary (northern Brazilian coast, east Amazon). Mar Ecol Prog Ser 256: 217–228.
[11]  Barletta M, Barletta-Bergan A, Saint-Paul U, Hubold G (2005) The role of salinity in structuring the fish assemblages in a tropical estuary. J Fish Biol 66: 45–72.
[12]  Barlleta M, Barlleta-Bergan A (2009) Endogenous activity rhythms of larval fish assemblages in a mangrove-fringed estuary in north Brazil. The Open Fish Science Journal 2: 15–24.
[13]  Rodrigues-Filho JL, Verani JR, Peret AC, Sabinson LM, Branco JO (2011) The influence of population structure and reproductive aspects of the genus Stellifer (Oken, 1817) on the abundance of species on the southern Brazilian coast. Braz J Biol 71: 991–1002.
[14]  Costa AJG, Costa KG, Pereira LCC, Sampaio MI, Costa RM (2011) Dynamics of hydrological variables and the fish larva community in an Amazonian estuary of northern Brazil. J Coastal Res 64: 1960–1964.
[15]  Pombo M, Denadai MR, Turra A (2012) Population biology of Stellifer rastrifer, S. brasiliensis and S. stellifer in Caraguatatuba bay, northern coast of S?o Paulo, Brazil. Braz J Oceanogr 60: 271–282.
[16]  Vinson C, Gomes G, Schneider H, Sampaio I (2004) Sciaenidae fish of the Caeté river estuary, northern Brazil: mitochondrial DNA suggests explosive radiation for the western Atlantic assemblage. Genet Mol Biol 27: 174–180.
[17]  Santos S, Gomes MF, Ferreira ARS, Sampaio I, Schneider H (2013) Molecular phylogeny of the western South Atlantic Sciaenidae based on mitochondrial and nuclear data. Mol Phylogenet Evol 66: 423–428.
[18]  Farias IP, Ortí G, Meyer A (2000) Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes. J Exp Zool B Mol Dev Evol 288: 76–92.
[19]  Chen W-J, Bonillo C, Lecointre G (2003) Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol 26: 262–288.
[20]  Li C, Ortí G (2007) Molecular phylogeny of Clupeiformes (Actinopterygii) inferred from nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol 44: 386–398.
[21]  Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7: 544–548.
[22]  Lakra WS, Goswami M, Gopalakrishnan A (2009) Molecular identification and phylogenetic relationships of seven Indian Sciaenids (Pisces: Perciformes, Sciaenidae) based on 16S rRNA and cytochrome c oxidase subunit I mitochondrial genes. Mol Biol Rep 36: 831–839.
[23]  Musilová Z, Schindler I, Staeck W (2009) Description of Andinoacara stalsbergi sp. n. (Teleostei: Cichlidae: Cichlasomatini) from Pacific coastal rivers in Peru, and annotations on the phylogeny of the genus. Vertebr Zool 59: 131–141.
[24]  Chen D, Guo X, Nie P (2010) Phylogenetic studies of sinipercid fish (Perciformes: Sinipercidae) based on multiple genes, with first application of an immune-related gene, the virus-induced protein (viperin) gene. Mol Phylogenet Evol 55: 1167–1176.
[25]  Hubert N, Delrieu-Trottin E, Irisson JO, Meyer C, Planes S (2010) Identifying coral reef fish larvae through DNA barcoding: a test case with the families Acanthuridae and Holocentridae. Mol Phylogenet Evol 55: 1195–1203.
[26]  Vi?as J, Bremer JRA, Pla C (2010) Phylogeography and phylogeny of the epineritic cosmopolitan bonitos of the genus Sarda (Cuvier): inferred patterns of intra- and inter-oceanic connectivity derived from nuclear and mitochondrial DNA data. J Biogeogr 37: 557–570.
[27]  Cooke GM, Chao NL, Beheregaray LB (2012) Marine incursions, cryptic species and ecological diversification in Amazonia: the biogeographic history of the croaker genus Plagioscion (Sciaenidae). J Biogeogr 39: 724–738.
[28]  Palumbi SR (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK, editors. Molecular Systematics. Sunderland, MA: Sinauer Associates, Inc. pp. 205–247.
[29]  Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia's fish species. Philos Trans R Soc Lond B Biol Sci 360: 1847–1857.
[30]  Streelman JT, Karl SA (1997) Reconstructing labroid evolution with single-copy nuclear DNA. Proc R Soc Lond B Biol Sci 264: 1011–1020.
[31]  Sevilla RG, Diez A, Norén M, Mouchel O, Jér?me M, et al. (2007) Primers and polymerase chain reaction conditions for DNA barcoding teleost fish based on the mitochondrial cytochrome b and nuclear rhodopsin genes. Mol Ecol Notes 7: 730–734.
[32]  López JA, Chen WJ, Ortí G (2004) Esociform Phylogeny. Copeia 3: 449–464.
[33]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
[34]  Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
[35]  Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92: 371–373.
[36]  Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25: 1253–1256.
[37]  Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0. Sunderland, MA: Sinauer Associates, Inc.
[38]  Guidon S, Dufayard JF, Lefort V, Anisimova M, Hordjik W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321.
[39]  Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution: 783–791.
[40]  Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
[41]  Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214.
[42]  Rambaut A, Drummond AJ (2007) Tracer v. 1.4. Available: http://beast.bio.ed.ac.uk/Tracer. Accessed 2013 May 20.
[43]  Rambaut A (2008) FigTree v. 1.4.0. Available: http://tree.bio.ed.ac.uk/software/figtre?e/. Accessed 2013 May 20.
[44]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.
[45]  Rocha LA, Lindeman KC, Rocha CR, Lessios HA (2008) Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae). Mol Phylogenet Evol 48: 918–928.
[46]  April J, Mayden RL, Hanner RH, Bernatchez L (2011) Genetic calibration of species diversity among North America's freshwater fishes. Proc Natl Acad Sci U S A 108: 10602–10607.
[47]  Castro BM, Miranda LB (1998) Physical oceanography of the western Atlantic continental shelf located between 4°N and 34°S coastal segment (4, W). In: Robinson AR, Brink KH, editors. The sea VII. New York: John Wiley & Sons, Inc. pp. 209–251.
[48]  Casey KS, Cornillon P (1999) A comparison of satellite and in situ-based sea surface temperature climatologies. J Climate 12: 1848–1863.
[49]  Ramsey PR, Wakeman JM (1987) Population structure of Sciaenops ocellatus and Cynoscion nebulosus (Pisces: Sciaenidae): biochemical variation, genetic subdivision and dispersal. Copeia 3: 682–695.
[50]  Planes S, Doherty PJ, Bernardi G (2001) Strong genetic divergence among populations of a marine fish with limited dispersal, Acanthochromis polyacanthus, within the great barrier reef and the Coral sea. Evolution 55: 2263–2273.
[51]  Stepien CA, Rosenblatt RH, Bargmeyer BA (2001) Phylogeography of the spotted sand bass, Paralabrax maculatofasciatus: divergence of Gulf of California and Pacific coast populations. Evolution 55: 1852–1862.
[52]  Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in tropical reef fishes. Proc R Soc Lond B Biol Sci 272: 573–579.
[53]  Bradbury IR, Campana SE, Bentzen P (2008) Estimating contemporary early life-history dispersal in an estuarine fish: integrating molecular and otolith elemental approaches. Mol Ecol 17: 1438–1450.
[54]  Brunner PC, Douglas MR, Osinov A, Wilson CC, Bernatchez L (2001) Holartic phylogeography of arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 55: 573–586.
[55]  Beheregaray LB, Sunnucks P, Briscoe DA (2002) A rapid fish radiation associated with the last sealevel changes in southern Brazil: the silverside Odontesthes perugiae complex. Proc R Soc Lond B Biol Sci 269: 65–73.
[56]  Grunwald C, Stabile J, Waldman JR, Gross R, Wirgin I (2002) Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences. Mol Ecol 11: 1885–1898.
[57]  Leray M, Beldade R, Holbrook SJ, Schmitt RJ, Planes S, et al. (2010) Allopatric divergence and speciation in coral reef fish: the three-spot dascyllus, Dascyllus trimaculatus, species complex. Evolution 64: 1218–1230.
[58]  Santos S, Schneider H, Sampaio I (2003) Genetic differentiation of Macrodon ancylodon (Sciaenidae, Perciformes) populations in Atlantic coastal waters of South America as revealed by mtDNA analysis. Genet Mol Biol 26: 151–161.
[59]  Santos S, Hrbek T, Farias IP, Schneider H, Sampaio I (2006) Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergence without morphological change. Mol Ecol 15: 4361–4373.
[60]  Carvalho-filho A, Santos S, Sampaio I (2010) Macrodon atricauda (Günther, 1880) (Perciformes: Sciaenidae), a valid species from the southwestern Atlantic, with comments on its conservation. Zootaxa 2519: 48–58.
[61]  Alencar SSC (2012) Taxonomia, estrutura populacional e filogeografia de Larimus breviceps (Sciaenidae) do Atlantico Sul ocidental através de dados mitocondriais e nucleares. Master's thesis. Universidade Federal do Pará, Pará, Brasil. 84p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133