[1] | Pavelites JJ, Prahlow JA (2011) Fatal human monocytic ehrlichiosis: a case study. Forensic Science Medicine and Pathology 7: 287–293. doi: 10.1007/s12024-010-9219-0
|
[2] | CDC Ehrlichiosis Website. Available: http://www.cdc.gov/ehrlichiosis/stats/. Accessed 2014 Jun 12.
|
[3] | Yabsley MJ, Wimberly MC, Stallknecht DE, Little SE, Davidson WR (2005) Spatial analysis of the distribution of Ehrlichia chaffeensis, causative agent of human monocytotropic ehrlichiosis, across a multi-state region. American Journal of Tropical Medicine and Hygiene 72: 840–850.
|
[4] | Wimberly MC, Baer AD, Yabsley MJ (2008) Enhanced spatial models for predicting the geographic distributions of tick-borne pathogens. International Journal of Health Geographics 7: 15 doi:10.1186/1476-072X-7-15.
|
[5] | Manangan JS, Schweitzer SH, Nibbelink N, Yabsley MJ, Gibbs SEJ, et al. (2007) Habitat factors influencing distributions of Anaplasma phagocytophilum and Ehrlichia chaffeensis in the Mississippi alluvial valley. Vector-Borne and Zoonotic Diseases 7: 563–573. doi: 10.1089/vbz.2007.0116
|
[6] | Fotheringham AS, Wong DWS (1991) The modifiable areal unit problem in multivariate statistical-analysis. Environment and Planning A 23: 1025–1044. doi: 10.1068/a231025
|
[7] | Raghavan RK, Brenner KM, Harrington JA Jr, Higgins JJ, Harkin KR (2013) Spatial scale effects in environmental risk-factor modelling for diseases. Geospatial health 7: 169–182.
|
[8] | Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change on emerging parasitic diseases. International Journal for Parasitology 30: 1395–1405. doi: 10.1016/s0020-7519(00)00141-7
|
[9] | Raghavan RK, Almes K, Goodin DG, Harrington JA, Stackhouse PW, (In press) Spatially heterogeneous land-cover/land-use and climatic risk factors of tick-borne feline cytauxzoonosis. Vector-Borne and Zoonotic Diseases.
|
[10] | Dorny P, Phiri IK, Vercruysse J, Gabriel S, Willingham AL, et al. (2004) A Bayesian approach for estimating values for prevalence and diagnostic test characteristics of porcine cysticercosis. International Journal for Parasitology 34: 569–576. doi: 10.1016/j.ijpara.2003.11.014
|
[11] | Lawson AB (2013) Bayesian disease mapping: hierarchical modeling in spatial epidemiology. Vol. 32 . CRC Press.
|
[12] | CDC National Notifiable Diseases Surveillance System (NNDSS) Website. Available: http://wwwn.cdc.gov/NNDSS/script/casedef?.aspx?CondYrID=667&DatePub=1/1/2008%2012?:00:00%20AM. Accessed 2014 Jun 12.
|
[13] | Multi-Resolution Land Characteristics Consortium (MRLC) Website. Available: http://www.mrlc.gov/nlcd2001.php. Accessed 2014 Jun 12.
|
[14] | USGS Land Processes Distributed Active Archive Center (LP DACC) Website. Available: https://lpdaac.usgs.gov/products/modis_p?roducts_table. Accessed 2014 Jun 12.
|
[15] | Eckman RS, Stackhouse PW Jr (2012) CEOS contributions to informing energy management and policy decision making using space-based Earth observations. Applied Energy 90: 206–210. doi: 10.1016/j.apenergy.2011.03.001
|
[16] | National Historical Geographic Information System (NHGIS) Website. Available: https://www.nhgis.org/. Accessed 2014 Jun 12.
|
[17] | Demma LJ, Holman RC, McQuiston JH, Krebs JW, Swerdlow DL (2005) Epidemiology of human ehrlichiosis and anaplasmosis in the United States, 2001–2002. American Journal of Tropical Medicine and Hygiene 73: 400–409. doi: 10.1196/annals.1374.017
|
[18] | CDC Ehrlichiosis Website. Available: http://www.cdc.gov/ehrlichiosis/stats/. Accessed 2014 Jun 2.
|
[19] | R-INLA Random Walk Model of Order 1 Website. Available: http://www.math.ntnu.no/inla/r-inla.org/?doc/latent/rw1.pdf. Accessed 2014 Jun 12.
|
[20] | Lawson AB (2013) Bayesian disease mapping. Hierarchical modeling in spatial epidemiology. Second Edition. CRC Press New York.
|
[21] | Hosmer DW, Lemeshow S (1990) Model-Building Strategies and Methods for Logistic Regression. Applied Logistic Regression. Second Edition ed. pp. 91–142.
|
[22] | R-INLA Project Website. Available: http://www.r-inla.org/. Accessed 2014 Jun 12.
|
[23] | Beocat Documentation Website. Available: http://www.cis.ksu.edu/beocat/documentat?ion. Accessed 2014 Jun 2.
|
[24] | Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Posterior simulation: In: Bayesian Data Analysis. Boca Raton, FL: Chapmann and Hall/CRC. pp 283–310.
|
[25] | CDC Approximate Distribution of the Lone Star Tick Website. Available: http://www.cdc.gov/ticks/maps/lone_star_?tick.html. Accessed 2014 Jun 12.
|
[26] | Bishopp FC, Trembley HL (1945) Distribution and hosts of certain North American ticks. Journal of Parasitology 31: 1–54. doi: 10.2307/3273061
|
[27] | Hair JA, Sauer JR, Durham KA (1975) Water-balance and humidity preference in 3 species of ticks. Journal of Medical Entomology 12: 37–47.
|
[28] | Rodgers SE, Zolnik CP, Mather TN (2007) Duration of exposure to suboptimal atmospheric moisture affects nymphal blacklegged tick survival. Journal of Medical Entomology 44: 372–375. doi: 10.1603/0022-2585(2007)44[372:doetsa]2.0.co;2
|
[29] | Yoder JA, Hedges BZ, Benoit JB (2012) Water balance of the American dog tick, Dermacentor variabilis, throughout its development with comparative observations between field-collected and laboratory-reared ticks. International Journal of Acarology 38: 334–343. doi: 10.1080/01647954.2011.647073
|
[30] | Wimberly MC, Yabsley MJ, Baer AD, Dugan VG, Davidson WR (2008) Spatial heterogeneity of climate and land-cover constraints on distributions of tick-borne pathogens. Global Ecology and Biogeography 17: 189–202. doi: 10.1111/j.1466-8238.2007.00353.x
|
[31] | Goodin DG, Mitchell JE, Knapp MC, Bivens RE (2004) Climate and weather atlas of Kansas. An Introduction. http://www.k-state.edu/ksclimate/documen?ts/kgsed.pdf Accessed: 2014 Jun 12.
|
[32] | Suess J, Gerstengarbe F-W (2008) What makes ticks tick? Climate change, ticks and tick-borne diseases. Parasitology Research 103: S157–S158. doi: 10.1111/j.1708-8305.2007.00176.x
|
[33] | Berger KA, Wang Y, Mather TN (2013) MODIS-derived land surface moisture conditions for monitoring blacklegged tick habitat in southern New England. International Journal of Remote Sensing 34: 73–85. doi: 10.1080/01431161.2012.705447
|
[34] | Randolph SE, Storey K (1999) Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. Journal of Medical Entomology 36: 741–748.
|
[35] | Ochanda H (2006) Comparison of the survival of Theileria parva-infected adult Rhipicephalus appendiculatus (Acari: Ixodidae) and their infection under simulated climate conditions in the laboratory and in the field. International Journal of Tropical Insect Science 26: 101–107. doi: 10.1079/ijt2006107
|
[36] | Schwartz MD (1995) Detecting structural climate-change - an air mass-based approach in the north central united-states, 1958-1992. Annals of the Association of American Geographers 85: 553–568. doi: 10.1111/j.1467-8306.1995.tb01812.x
|
[37] | Gray JS, Dautel H, Estrada-Pena A, Kahl O, Lindgren E (2009) Effects of climate change on ticks and tick-borne diseases in Europe. Interdisciplinary perspectives on infectious diseases 2009: 593232–593232. doi: 10.1155/2009/593232
|
[38] | Gilbert L (2010) Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia 162: 217–225. doi: 10.1007/s00442-009-1430-x
|
[39] | Randolph SE (2010) To what extent has climate change contributed to the recent epidemiology of tick-borne diseases? Veterinary Parasitology 167: 92–94. doi: 10.1016/j.vetpar.2009.09.011
|
[40] | Karl TR, Kukla G, Razuvayev VN, Changery MJ, Quayle RG, et al. (1991) Global warming - evidence for asymmetric diurnal temperature-change. Geophysical Research Letters 18: 2253–2256. doi: 10.1029/91gl02900
|
[41] | Braganza K, Karoly DJ, Arblaster JM (2004) Diurnal temperature range as an index of global climate change during the twentieth century. Geophysical Research Letters 31..
|
[42] | Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, et al. (1993) A new perspective on recent global warming - asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society 74: 1007–1023. doi: 10.1175/1520-0477(1993)074<1007:anporg>2.0.co;2
|
[43] | Sumilo D, Bormane A, Asokliene L, Vasilenko V, Golovljova I, et al. (2008) Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Reviews in Medical Virology 18: 81–95. doi: 10.1002/rmv.566
|
[44] | Stefanoff P, Rosinska M, Samuels S, White DJ, Morse DL, et al.. (2012) A National Case-Control Study Identifies Human Socio-Economic Status and Activities as Risk Factors for Tick-Borne Encephalitis in Poland. Plos One 7..
|
[45] | Godfrey ER, Randolph SE (2011) Economic downturn results in tick-borne disease upsurge. Parasites & Vectors 4.
|
[46] | County Health Ranking Website. Available: http://www.countyhealthrankings.org/app/?kansas/2013/rankings/outcomes/overall/by?-rank. Accessed 2014 Jun 12.
|