全部 标题 作者
关键词 摘要

PLOS ONE  2014 

Diatom-Derived Polyunsaturated Aldehydes Activate Cell Death in Human Cancer Cell Lines but Not Normal Cells

DOI: 10.1371/journal.pone.0101220

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs) that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD), 2-trans,4-trans-octadienal (OD) and 2-trans,4-trans-heptadienal (HD) on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1) and Fas Associated Death Domain (FADD) leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP). The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

References

[1]  Caldwell GS (2009) The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development. Mar Drugs 7: 367–400. doi: 10.3390/md7030367
[2]  Leflaive J, Ten-Hage L (2009) Chemical interactions in diatoms: role of polyunsaturated aldehydes and precursors. New Phytologist 184: 794–805. doi: 10.1111/j.1469-8137.2009.03033.x
[3]  Ianora A, Miralto A (2010) Toxigenic effects of diatoms on grazers, phytoplankton and other microbes. Ecotoxicology 19: 493–511. doi: 10.1007/s10646-009-0434-y
[4]  Fontana A, d'Ippolito G, Cutignano A, Romano G, Lamari N, et al. (2007) LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. Chembiochem 8: 1810–1818. doi: 10.1002/cbic.200700269
[5]  Pohnert G (2005) Diatom-Copepod interactions in plankton: the indirect chemical defense of unicellular algae. Chem Biochem 6: 1–14. doi: 10.1002/cbic.200400348
[6]  Ianora A, Miralto A, Poulet SA, Carotenuto Y, Buttino I, et al. (2004) Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429: 403–407. doi: 10.1038/nature02526
[7]  Ianora A, Romano G, Carotenuto Y, Esposito F, Roncalli V, et al. (2011) Impact of the diatom oxylipin 15S-HEPE on the reproductive success of the copepod Temora stylifera. Hydrobiologia 666: 265–275. doi: 10.1007/s10750-010-0420-7
[8]  Casotti R, Mazza S, Brunet C, Vantrepotte V, Ianora A, et al. (2005) Growth inhibition and toxicity of the algal aldehyde 2-trans-2-cis decadienal on Thalassiosira weissflogii (Bacillariophyceae). J Phycol 41: 7–20. doi: 10.1111/j.1529-8817.2005.04052.x
[9]  Ribalet F, Berges JA, Ianora A, Casotti R (2007) Growth inhibition of cultured marine phytoplankton by toxic algal-derived polyunsaturated aldehydes. Aquat Toxicol 85: 219–227. doi: 10.1016/j.aquatox.2007.09.006
[10]  Vardi A, Formiggini F, Casotti R, De Martino A, Ribalet F, et al. (2006) A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biology 4: 411–419. doi: 10.1371/journal.pbio.0040060
[11]  Ribalet F, Intertaglia L, Lebaron F, Casotti R (2008) Differential effects of three polyunsaturated aldehydes on marine bacterial isolates. Aquat Toxicol 86: 249–255. doi: 10.1016/j.aquatox.2007.11.005
[12]  Balestra C, Alonso-Sáez L, Gasol JM, Casotti R (2011) Group-specific effects on coastal bacterioplankton of polyunsaturated aldehydes produced by diatoms. Aquat Microb Ecol 63: 123–131. doi: 10.3354/ame01486
[13]  Vidoudez C, Pohnert G (2008) Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. J Plankton Res 30: 1305–1313. doi: 10.1093/plankt/fbn085
[14]  Vidoudez C, Nejstgaard JC, Jakobsen HH, Pohnert G (2011) Dynamics of dissolved and particulate polyunsaturated aldehydes in mesocosms inoculated with different densities of the diatom Skeletonema marinoi. Mar Drugs 9: 345–358. doi: 10.3390/md9030345
[15]  Miralto A, Barone G, Romano G, Poulet SA, Ianora A, et al. (1999) The insidious effect of diatoms on copepod reproduction. Nature 402: 173–176. doi: 10.1038/46023
[16]  Halsband-Lenk C, Pierson JJ, Leising AW (2005) Reproduction of Pseudocalanus newmani (Copepoda: Calanoida) is deleteriously affected by diatom blooms a field study. Prog Oceanogr 67: 332–348. doi: 10.1016/j.pocean.2005.09.003
[17]  Ask J, Reinikainen M, Bamstedt U (2006) Variation in hatching success and egg production of Eurytemora affinis (Calanoida, Copepoda) from the Gulf of Bothnia, Baltic Sea, in relation to abundance and clonal differences of diatoms. J Plankton Res 28: 683–694. doi: 10.1093/plankt/fbl005
[18]  Poulet SA, Escribano R, Hidalgo P, Cueff A, Wichard T, et al. (2007) Collapse of Calanus chilensis reproduction in a marine environment with high diatom concentration. J Exp Mar Biol Ecol 352: 187–199. doi: 10.1016/j.jembe.2007.07.019
[19]  Carotenuto Y, Ianora A, Miralto A (2011) Maternal and neonate diatom diets impair development and sex differentiation in the copepod Temora stylifera. J Exp Mar Biol Ecol 396: 99–107. doi: 10.1016/j.jembe.2010.10.012
[20]  Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48: 148–170. doi: 10.1016/j.plipres.2009.02.002
[21]  Weinberger F (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol Bull 213: 290–302. doi: 10.2307/25066646
[22]  d'Ippolito G, Iadicicco O, Romano G, Fontana A (2002) Detection of short-chain aldehydes in marine organisms: the diatom Thalassiosira rotula. Tetrahedron Lett 43: 6137–6140. doi: 10.1016/s0040-4039(02)01283-2
[23]  d'Ippolito G, Romano G, Iadicicco O, Miralto A, Ianora A, et al. (2002) New birth-control aldehydes from the marine diatom Skeletonema costatum: characterization and biogenesis. Tetrahedron Lett 43: 6133–6136. doi: 10.1016/s0040-4039(02)01285-6
[24]  Wichard T, Poulet SA, Halsband-Lenk C, Albaina A, Harris R, et al. (2005) Survey of the chemical defense potential of diatoms: Screening of fifty one species for α, β, γ, δ-unsaturated aldehydes. J Chem Ecol 31: 949–958. doi: 10.1007/s10886-005-3615-z
[25]  Ceballos S, Ianora A (2003) Different diatoms induce contrasting effects in the copepod Temora stylifera. J Exp Mar Biol Ecol 294: 189–202. doi: 10.1016/s0022-0981(03)00263-6
[26]  Adolph S, Poulet SA, Pohnert G (2003) Synthesis and biological activity of alpha, beta, gamma, delta unsaturated aldehydes from diatoms. Tetrahedron 59: 3003–3008. doi: 10.1016/s0040-4020(03)00382-x
[27]  Romano G, Miralto A, Ianora A (2010) Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos. Mar Drugs 8: 950–967. doi: 10.3390/md8040950
[28]  Poulet SA, Richer de Forges M, Cueff A, Lennon JF (2003) Double labelling methods used to diagnose apoptotic and necrotic cell degradations in copepod nauplii. Mar Biol 143: 889–895. doi: 10.1007/s00227-003-1142-4
[29]  Romano G, Russo GL, Buttino I, Ianora A, Miralto A (2003) A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J Exp Biol 206: 3487–3494. doi: 10.1242/jeb.00580
[30]  Phetteplace KL (2010) Trypan blue assay Standard Operative Procedure (SOP). New Hampshire Community Technical College, 320 Corporate Drive, Portsmouth, NH 03801. Doc. No.2.5.
[31]  Ciniglia C, Pinto G, Sansone C, Pollio A (2010) Acridine orange/Ethidium bromide double staining test: A simple In-vitro assay to detect apoptosis induced by phenolic compounds in plant cells. Allelopathy J 26: 301–308.
[32]  Wajant H (2002) The Fas Signaling Pathway: more than a paradigm. Science 296: 1635–1636. doi: 10.1126/science.1071553
[33]  Cheah SC, Lai SL, Lee ST, Hadi AHA, Mustafa MR (2013) Panduratin A, a Possible Inhibitor in Metastasized A549 Cells through Inhibition of NF-Kappa B Translocation and Chemoinvasion. Molecules 18: 8764–8778. doi: 10.3390/molecules18088764
[34]  Hung J, Yang C, Tsai Y, Huang H, Huang M (2008) Antiproliferative activity of paeoniflorin is through cell cycle arrest and the Fas/Fas ligand-mediated apoptotic pathway in human non-small lung cancer A549 cells. Clin Exp Pharmacol Physiol 35: 141–147. doi: 10.1111/j.1440-1681.2007.04795.x
[35]  Mou H, Zheng Y, Zhao P, Bao H, Fang W, et al. (2011) Celastrol induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria- and Fas/FasL-mediated pathways. Toxicol In Vitro 25: 1027–1032. doi: 10.1016/j.tiv.2011.03.023
[36]  Sughra K, Birbach A, de Martin R, Schmid JA (2010) Interaction of the TNFR-Receptor Associated Factor TRAF1 with I-Kappa B Kinase-2 and TRAF2 Indicates a Regulatory Function for NF-Kappa B Signaling. PLoS ONE 5: e12683. doi: 10.1371/journal.pone.0012683
[37]  Chen Q, Wang Y, Xu K, Lu G, Ying Z, et al. (2010) Curcumin induces apoptosis in human lung adenocarcinoma A549 cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Oncol Rep 2: 397–403. doi: 10.3892/or_00000648
[38]  Zhang YL, Zhang R, Xu HL, Yu XF, Qu SC, et al. (2013) 20(S)-Protopanaxadiol Triggers Mitochondrial-Mediated Apoptosis in Human Lung Adenocarcinoma A549 Cells via Inhibiting the PI3K/Akt Signaling Pathway. Am J Chin Med 41: m1137–1152. doi: 10.1142/s0192415x13500778
[39]  Park SH, Kim JH, Chi GY, Kim GY, Chang YC, et al. (2012) Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species. Toxicol Lett 212: 252–261. doi: 10.1016/j.toxlet.2012.06.007
[40]  Buttino I, De Rosa G, Carotenuto Y, Mazzella M, Ianora A, et al. (2008) Aldehyde-encapsulating liposomes impair marine grazer survivorship. J Exp Biol 211: 1426–1433. doi: 10.1242/jeb.015859
[41]  Vidoudez C, Casotti R, Bastianini M, Pohnert G (2011) Quantification of dissolved and particulate polyunsaturated aldehydes in the Adriatic Sea. Mar Drugs 9: 500–513. doi: 10.3390/md9040500

Full-Text

comments powered by Disqus