All Title Author
Keywords Abstract

Relation between Seasonally Detrended Shortwave Infrared?Reflectance Data and Land Surface Moisture in Semi?Arid Sahel

DOI: 10.3390/rs5062898

Keywords: soil moisture, vegetation, water stress, Earth observation, MSG SEVIRI, SIWSI, NDVI, Sahel, drought

Full-Text   Cite this paper   Add to My Lib


In the Sudano-Sahelian areas of Africa droughts can have serious impacts on natural resources, and therefore land surface moisture is an important factor. Insufficient conventional sites for monitoring land surface moisture make the use of Earth Observation data for this purpose a key issue. In this study we explored the potential of using reflectance data in the Red, Near Infrared (NIR), and Shortwave Infrared (SWIR) spectral regions for detecting short term variations in land surface moisture in the Sahel, by analyzing data from three test sites and observations from the geostationary Meteosat Second Generation (MSG) satellite. We focused on responses in surface reflectance to soil- and surface moisture for bare soil and early to mid- growing season. A method for implementing detrended time series of the Shortwave Infrared Water Stress Index (SIWSI) is examined for detecting variations in vegetation moisture status, and is compared to detrended time series of the Normalized Difference Vegetation Index (NDVI). It was found that when plant available water is low, the SIWSI anomalies increase over time, while the NDVI anomalies decrease over time, but less systematically. Therefore SIWSI may carry important complementary information to NDVI in terms of vegetation water status, and can provide this information with the unique combination of temporal and spatial resolution from optical geostationary observations over Sahel. However, the relation between SIWSI anomalies and periods of water stress were not found to be sufficiently robust to be used for water stress detection.


[1]  Eagleson, P.S. Ecological optimality in water-limited natural soil-vegetation systems. 1. Theory and hypothesis. Water Resour. Res. 1982, 18, 325–340.
[2]  Rodriguez-Iturbe, I.; Porporato, A. Ecohydrology of Water-Controlled Ecosystems, Soil Moisture and Plant Dynamics; Cambridge University Press: Cambridge, UK, 2004.
[3]  Koster, R.D.; Dirmeyer, P.A.; Guo, Z.C.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140.
[4]  Hutchinson, C.F. Uses of satellite data for famine early warning in Sub-Saharan Africa. Int. J. Remote Sens. 1991, 12, 1405–1421.
[5]  Thornton, P.K.; Bowen, W.T.; Ravelo, A.C.; Wilkens, P.W.; Farmer, G.; Brock, J.; Brink, J.E. Estimating millet production for famine early warning: An application of crop simulation modelling using satellite and ground-based data in Burkina Faso. Agric. For. Meteorol. 1997, 83, 95–112.
[6]  Anyamba, A.; Tucker, C.J.; Huete, A.R.; Boken, V.K. Monitoring Drought Using Coarse-Resolution Polar-Orbiting Satellite Data. In Monitoring and Predicting Agricultural Drought: A Global Study; Boken, V.K., Cracknell, A.P., Heathcote, R.L., Eds.; Oxford Univerisity Press: New York, NY, USA, 2005.
[7]  Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS Mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 2010, 98, 666–687.
[8]  Carlson, T.N.; Ripley, D.A. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173.
[9]  Gillies, R.R.; Carlson, T.N.; Cui, J.; Kustas, W.P.; Humes, K.S. A verification of the “triangle” method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int. J. Remote Sens. 1997, 18, 3145–3166.
[10]  Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224.
[11]  Krapez, J.C.; Olioso, A. A combination of temperature, vegetation indexes and albedo, as obtained by airborne hyperspectral remote sensing, for the evaluation of soil moisture. QIRT J. 2011, 8, 187–200.
[12]  Loomis, W.E. Absorption of radiant energy by leaves. Ecology 1965, 46, 14–24.
[13]  Olson, C.E. Accuracy of land-use interpretation from infrared imagery in the 4.5 to 5.5 micron band. Ann. Assoc. Am. Geogr. 1967, 57, 382–388.
[14]  Tucker, C.J. Remote-sensing of leaf water-content in the near-infrared. Remote Sens. Environ. 1980, 10, 23–32.
[15]  Gao, B.-C.; Goetz, A.F.H. Retrieval of equivalent water thickness and information related to biochemical-components of vegetation canopies from aviris data. Remote Sens. Environ. 1995, 52, 155–162.
[16]  Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266.
[17]  Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water-deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263.
[18]  Goetz, S.J. Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. Int. J. Remote Sens. 1997, 18, 71–94.
[19]  Stisen, S.; Sandholt, I.; Norgaard, A.; Fensholt, R.; Jensen, K.H. Combining the triangle method with thermal inertia to estimate regional evapotranspiration—Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sens. Environ. 2008, 112, 1242–1255.
[20]  Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[21]  Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252.
[22]  Daughtry, C.S.T. Discriminating crop residues from soil by shortwave infrared reflectance. Agron. J. 2001, 93, 125–131.
[23]  Tucker, C.J. Comparison of satellite sensor bands for vegetation monitoring. Photogramm. Eng. Remote Sensing 1978, 44, 1369–1380.
[24]  Ben-Dor, E.; Irons, J.R.; Epeman, G.F. Soil Reflectance. In Manual of Remote Sensing: Remote Sensing for the Earth Sciences, 3rd ed. ed.; Wiley & Sons: New York, NY, USA, 1999; pp. 111–173.
[25]  Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985, 17, 37–53.
[26]  Lobell, D.B.; Asner, G.P. Moisture effects on soil reflectance. Soil Sci. Soc. Amer. J. 2002, 66, 722–727.
[27]  Small, C.; Steckler, M.; Seeber, L.; Akhter, S.H.; Goodbred, S.; Mia, B.; Imam, B. Spectroscopy of sediments in the Ganges-Brahmaputra delta: Spectral effects of moisture, grain size and lithology. Remote Sens. Environ. 2009, 113, 342–361.
[28]  Samain, O.; Kergoat, L.; Hiernaux, P.; Guichard, F.; Mougin, E.; Timouk, F.; Lavenu, F. Analysis of the in situ and MODIS albedo variability at multiple timescales in the Sahel. J. Geophys. Res. Atmos. 2008, doi:10.1029/2007JD009174.
[29]  Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Gregoire, J.M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33.
[30]  Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data—Part 1. Theoretical approach. Remote Sens. Environ. 2002, 82, 188–197.
[31]  Ceccato, P.; Flasse, S.; Gregoire, J.M. Designing a spectral index to estimate vegetation water content from remote sensing data—Part 2. Validation and applications. Remote Sens. Environ. 2002, 82, 198–207.
[32]  Fensholt, R.; Sandholt, I. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sens. Environ. 2003, 87, 111–121.
[33]  Sj?strom, M.; Ardo, J.; Eklundh, L.; El-Tahir, B.A.; El-Khidir, H.A.M.; Hellstrom, M.; Pilesjo, P.; Seaquist, J. Evaluation of satellite based indices for gross primary production estimates in a sparse savanna in the Sudan. Biogeosciences 2009, 6, 129–138.
[34]  Fensholt, R.; Huber, S.; Proud, S.R.; Mbow, C. Detecting canopy water status using shortwave infrared reflectance data from polar orbiting and geostationary platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 271–285.
[35]  Love, T. The Climate Prediction Center Rainfall Estimation Algorithm Version 2; Climate Prediction Center-National Oceanic and Atmospheric Association (NOAA): College Park, MD, USA, 2002.
[36]  Food and Agriculture Organization of the United Nations (FAO-UN)/International Union of Soil Sciences (IUSS) Working Group. World Reference Base for Soil Resources 2006—A Framework for International Classification, Correlation and Communication; FAO-UN: Rome, Italy, 2006; Volume 103.
[37]  Food and Agriculture Organization (FAO). Harmonized World Soil Database (version 1.1); FAO: Rome, Italy, 2009.
[38]  Fensholt, R.; Sandholt, I.; Stisen, S. Evaluating MODIS, MERIS, and VEGETATION—Vegetation indices using in situ measurements in a semiarid environment. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1774–1786.
[39]  Proud, S.R.; Rasmussen, M.O.; Fensholt, R.; Sandholt, I.; Shisanya, C.; Mutero, W.; Mbow, C.; Anyamba, A. Improving the SMAC atmospheric correction code by analysis of Meteosat Second Generation NDVI and surface reflectance data. Remote Sens. Environ. 2010, 114, 1687–1698.
[40]  Rasmussen, M.O.; Gottsche, F.M.; Diop, D.; Mbow, C.; Olesen, F.S.; Fensholt, R.; Sandholt, I. Tree survey and allometric models for tiger bush in northern Senegal and comparison with tree parameters derived from high resolution satellite data. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 517–527.
[41]  Mougin, E.; Hiernaux, P.; Kergoat, L.; Grippa, M.; de Rosnay, P.; Timouk, F.; Le Dantec, V.; Demarez, V.; Lavenu, F.; Arjounin, M.; et al. The AMMA-CATCH Gourma observatory site in Mali: Relating climatic variations to changes in vegetation, surface hydrology, fluxes and natural resources. J. Hydrol. 2009, 375, 14–33.
[42]  African Monsoon Multi-Disciplinary Analysis (AMMA). Available online: (accessed on 4 December2012).
[43]  Hiernaux, P.; Mougin, E.; Diarra, L.; Soumaguel, N.; Lavenu, F.; Tracol, Y.; Diawara, M. Sahelian rangeland response to changes in rainfall over two decades in the Gourma region, Mali. J. Hydrol. 2009, 375, 114–127.
[44]  Elberling, B.; Fensholt, R.; Larsen, L.; Petersen, A.-I. S.; Sandholt, I. Water content and land use history controlling soil CO2 respiration and carbon stock in savanna soil and groundnut fields in semi-arid Senegal. Geografisk Tidsskrift-Dan. J. Geogr. 2003, 103, 47–56.
[45]  Ard?, J.; M?lder, M.; El-Tahir, B.A.; Elkhidir, H.A.M. Seasonal variation of carbon fluxes in a sparse savanna in semi arid Sudan. Carbon Balanc. Manag. 2008, doi:10.1186/1750-0680-3-7.
[46]  M?llerstr?m, L. Modelling Soil Temperature & Soil Water Availability in Semi-Arid Sudan: Validation and Testing. M.Sc. Thesis, Lund University: Lund, Sweden; 2004.
[47]  Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteorol. Soc. 2002, 83, 977–992.
[48]  Proud, S.R.; Fensholt, R.; Rasmussen, M.O.; Sandholt, I. A comparison of the effectiveness of 6S and SMAC in correcting for atmospheric interference of Meteosat Second Generation images. J. Geophys. Res.-Atmos. 2010, doi:10.1029/2009JD013693..
[49]  Rahman, H.; Dedieu, G. Smac—A simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens. 1994, 15, 123–143.
[50]  Lutz, H.J. Cloud Detection for MSG—Algorithm Theoretical Basis Document (ATBD); EUM/MET/REP/07/0132 v2; The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT): Darmstadt, Germany, 2007; Volume 2.
[51]  Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148.
[52]  Proud, S.R.; Zhanf, Q.; Schaaf, C.; Fensholt, R.; Rasmussen, M.O.; Shisanya, C.; Mutero, W.; Mbow, C.; Anyamba, A.; Pak, E.; et al. The normalization of the surface anisotropy effects present in SEVIRI reflectance data by using the MODIS BRDF method. IEEE Trans. Geosci. Remote Sens. 2013. in reivew.
[53]  De Rosnay, P.; Gruhier, C.; Timouk, F.; Baup, F.; Mougin, E.; Hiernaux, P.; Kergoat, L.; LeDantec, V. Multi-scale soil moisture measurements at the Gourma meso-scale site in Mali. J. Hydrol. 2009, 375, 241–252.
[54]  Mbow, C.; Fensholt, R.; Rasmussen, K.; Diop, D. Can vegetation productivity be derived from greenness in a semi-arid environment? Evidence from ground based measurements. J. Arid Environ. 2013. in press.
[55]  Tracol, Y.; Mougin, E.; Hiernaux, P.; Jarlan, L. Testing a sahelian grassland functioning model against herbage mass measurements. Ecol. Model. 2006, 193, 437–446.
[56]  Boone, A.; De Rosnay, P.; Balsamo, G.; Beljaars, A.; Chopin, F.; Decharme, B.; Delire, C.; Ducharne, A.; Gascoin, S.; Grippa, M.; et al. The amma land surface model intercomparison project (almip). Bull. Amer. Meteorol. Soc. 2009, 90, 1865–1880.
[57]  Kaufman, Y.J.; Tanre, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res.-Atmos 1997, 102, 17051–17067.
[58]  Levy, R.C.; Remer, L.A.; Tanré, D.; Mattoo, S.; Kaufmann, R.K. Algorithm for Remote Sensing of Tropospheric Aerosol over Dark Targets from MODIS: Collections 005 and 051; National Aeronautics and Space Administration (NASA): Greenbelt, MD, USA, 2009.
[59]  Ceccato, P.; Cressman, K.; Giannini, A.; Trzaska, S. The desert locust upsurge in West Africa (2003–2005): Information on the desert locust early warning system and the prospects for seasonal climate forecasting. Int. J. Pest Manag. 2007, 53, 7–13.
[60]  Elberse, W.T.; Breman, H. Germination and establishment of sahelian rangeland species—1. Seed properties. Oecologia 1989, 80, 477–484.
[61]  Wang, L.L.; Qu, J.J.; Hao, X.J.; Zhu, Q.P. Sensitivity studies of the moisture effects on MODIS SWIR reflectance and vegetation water indices. Int. J. Remote Sens. 2008, 29, 7065–7075.
[62]  Baghzouz, M.; Devitt, D.A.; Fenstermaker, L.F.; Young, M.H. Monitoring vegetation phenological cycles in two different semi-arid environmental settings using a ground-based NDVI system: A potential approach to improve satellite data interpretation. Remote Sens. 2010, 2, 990–1013.
[63]  Sow, M.; Mbow, C.; Hély, C.; Fensholt, R.; Sambou, B. Estimation of herbaceous fuel moisture content using vegetation indices and land surface temperature from MODIS data. Remote Sens. 2013, 5, 2617–2638.


comments powered by Disqus