全部 标题 作者
关键词 摘要

Pasture Monitoring Using SAR with COSMO-SkyMed, ENVISAT ASAR, and ALOS PALSAR in Otway, Australia

DOI: 10.3390/rs5073611


Full-Text   Cite this paper   Add to My Lib


Because of all-weather working ability, sensitivity to biomass and moisture, and high spatial resolution, Synthetic aperture radar (SAR) satellite images can perfectly complement optical images for pasture monitoring. This paper aims to examine the potential of the integration of COnstellation of small Satellites for the Mediterranean basin Observasion (COSMO-SkyMed), Environmental Satellite Advanced Synthetic Aperture Radar (ENVISAT ASAR), and Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) radar signals at horizontally emitted and received polarization (HH) for pasture monitoring at the paddock scale in order to guide farmers for better management. The pasture site is selected, in Otway, Victoria, Australia. The biomass, water content of grass, and soil moisture over this site were analyzed with these three bands of SAR images, through linear relationship between SAR backscattering coefficient, and vegetation indices Normalized Differential Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Enhanced Vegetation Index (EVI)), together with soil moisture index (MI). NDVI, NDWI, and MI are considered as proxy of pasture biomass, plant water content, and soil moisture, respectively, and computed from optical images and climate data. SAR backscattering coefficient and vegetation indices are computed within a grass zone, defined by classification with MODIS data. The grass condition and grazing activities for specific paddocks are detectable, based on SAR backscatter, with all three wavelengths datasets. Both temporal and spatial analysis results show that the X-band SAR has the highest correlation to the vegetation indices. However, its accuracy can be affected by wet weather due to its sensitivity to the water on leaves. The C-band HH backscattering coefficient showed moderate reliability to evaluate biomass and water content of grass, with limited influence from rainfall in the dry season. The L-band SAR is the less accurate one for grass biomass measurement due to stronger penetration.


[1]  McNeill, S.; Pairman, D.; Belliss, S.; Dalley, D.; Dynes, R. Estimation of Pasture Biomass Using Dual-Polarisation Radar Imagery—A Preliminary Study. Proceedings of 23rd International Conference on Image and Vision Computing, Christchurch, New Zealand, 26–28 November 2008; pp. 1–6.
[2]  Tieszen, L.L.; Reed, B.C.; Bliss, N.B.; Wylie, B.K.; De Jong, D.D. NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes. Ecol. Appl 1997, 7, 59–78.
[3]  Hill, M.; Donald, G.; Vickery, P. Relating radar backscatter to biophysical properties of temperate perennial grassland. Remote Sens.. Environ 1999, 67, 15–31.
[4]  Ferreira, L.G.; Fernandez, L.E.; Sano, E.E.; Field, C.; Sousa, S.B.; Arantes, A.E.; Araújo, F.M. Biophysical properties of cultivated pastures in the Brazilian savanna biome: An analysis in the spatial-temporal domains based on ground and satellite data. Remote Sens 2013, 5, 307–326.
[5]  Schino, G.; Borfecchia, F.; De Cecco, L.; Dibari, C.; Iannetta, M.; Martini, S.; Pedrotti, F. Satellite estimate of grass biomass in a mountainous range in central Italy. Agroforest. Syst 2003, 59, 157–162.
[6]  Hill, M.J.; Donald, G.E.; Hyder, M.W.; Smith, R.C.G. Estimation of pasture growth rate in the south west of Western Australia from AVHRR NDVI and climate data. Remote Sens. Environ 2004, 93, 528–545.
[7]  Donald, G.; Gherardi, S.; Edirisinghe, A.; Gittins, S.; Henry, D.; Mata, G. Using MODIS imagery, climate and soil data to estimate pasture growth rates on farms in the south-west of Western Australia. Anim. Prod. Sci 2010, 50, 611–615.
[8]  Edirisinghe, A.; Hill, M.; Donald, G.; Hyder, M. Quantitative mapping of pasture biomass using satellite imagery. Int. J. Remote Sens 2011, 32, 2699–2724.
[9]  Laurila, H.; Karjalainen, M.; Kleemola, J.; Hyypp?, J. Cereal yield modeling in finland using optical and radar remote sensing. Remote Sens 2010, 2, 2185–2239.
[10]  Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ 1996, 58, 257–266.
[11]  Gu, Y.; Brown, J.; Verdin, J.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the Central Great Plains of the United States. Geophys. Res. Lett 2007, 34, L06407.
[12]  Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ 2002, 83, 195–213.
[13]  Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651.
[14]  Dusseux, P.; Gong, X.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Contribution of Radar Images for Grassland Management Identification. Proceedings of SPIE (International Society for optics and photonics) on Remote Sensing, Edinburgh, UK, 24–27 September 2012; pp. 1–7.
[15]  Schmullius, C.; Furrer, R. Frequency dependence of radar backscattering under different moisture conditions of vegetation-covered soil. Int. J. Remote Sens 1992, 13, 2233–2245.
[16]  Moreau, S.; Le Toan, T. Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management. Remote Sens. Environ 2003, 84, 477–492.
[17]  Attema, E.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci 1978, 13, 357–364.
[18]  Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens 1992, 30, 370–381.
[19]  Ulaby, F.T.; Bradley, G.A.; Dobson, M.C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part II-vegetation-covered soil. IEEE Trans. Geosci. Electro 1979, 17, 33–40.
[20]  Ferrazzoli, P.; Paloscia, S.; Pampaloni, P.; Schiavon, G.; Sigismondi, S.; Solimini, D. The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass. IEEE Trans. Geosci. Remote Sens 1997, 35, 5–17.
[21]  Fung, A.K.; Chen, K.-S. Microwave Scattering and Emission Models and Their Applications; Artech House Publishers: Boston, MA, USA, 1994.
[22]  Wu, T.-D.; Chen, K.-S. A reappraisal of the validity of the IEM model for backscattering from rough surfaces. IEEE Trans. Geosci. Remote Sens 2004, 42, 743–753.
[23]  Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ 2013, 134, 234–248.
[24]  Santi, E.; Fontanelli, G.; Montomoli, F.; Brogioni, M.; Macelloni, G.; Paloscia, S.; Pettinato, S.; Pampaloni, P. The Retrieval and Monitoring of Vegetation Parameters from COSMO-SkyMed Images. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 7031–7034.
[25]  Stolz, R.; Mauser, W. Evaluation of ERS Data for Biomass Estimation of Meadows. Proceedings of the Third ERS Symposium on Space at the Service of Our Environment, Florence, Italy, 14–21 March 1997; pp. 203–207.
[26]  McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm 2009, 64, 434–449.
[27]  McNairn, H.; Shang, J.; Champagne, C.; Jiao, X. TerraSAR-X and RADARSAT-2 for Crop Classification and Acreage Estimation. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12–17 July 2009. Volume II; pp. 898–901.
[28]  McNeill, S.; Pairman, D.; Belliss, S.; Dalley, D.; Dynes, R. Robust Estimation of Pasture Biomass Using Dual-Polarisation TerrASAR-X Imagery. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 3094–3097.
[29]  Dhar, T.; Menges, C.; Douglas, J.; Schmidt, M.; Armston, J. Estimation of Pasture Biomass and Soil-Moisture Using Dual-Polarimetric X and L Band SAR-Accuracy Assessment with Field Data. Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 1450–1453.
[30]  Ali, I.; Schuster, C.; Zebisch, M.; Forster, M.; Kleinschmit, B.; Notarnicola, C. First results of monitoring nature conservation sites in alpine region by using very high resolution (VHR) X-band SAR data. IEEE. J. Sel. Top. Appl. Earth Obs. 2013, 1–10.
[31]  Frost, V.S.; Stiles, J.A.; Shanmugan, K.; Holtzman, J.C. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Machine Intell. 1982, PAMI-4, 157–166.
[32]  Small, D.; Schubert, A. Guide to ASAR Geocoding; RSL-ASAR-GC-AD; European Space Agency (ESA): Paris, France, 2008. Issue 1.0.
[33]  Gausman, H. Reflectance of leaf components. Remote Sens. Environ 1977, 6, 1–9.
[34]  Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ 2001, 77, 22–33.
[35]  Nix, H. Simplified Simulation Models Based on Specified miNimum Data Sets: The CROPEVAL Concept; Application of Remote Sensing to Agricultural Production Forecasting: Rotterdam, The Netherland, 1981; pp. 151–169.
[36]  Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: With Special Reference to the Biological Sciences; McGraw-Hill Book Co.: New York, NY, USA, 1960.
[37]  Goodman, S.N. Toward evidence-based medical statistics. 1: The p value fallacy. Ann. Intern. Med 1999, 130, 995–1004.
[38]  Lopez-Sanchez, J.; Ballester-Berman, J. Potentials of polarimetric SAR interferometry for agriculture monitoring. Radio Sci. 2009, 44, RS2010.
[39]  Mo, T.; Schmugge, T.J.; Jackson, T.J. Calculations of radar backscattering coefficient of vegetation-covered soils. Remote Sens. Environ 1984, 15, 119–133.


comments powered by Disqus