All Title Author
Keywords Abstract

Evaluation of ALOS PALSAR Imagery for Burned Area Mapping in Greece Using Object-Based Classification

DOI: 10.3390/rs5115680

Keywords: fire severity, Mediterranean landscape, multi-temporal SAR

Full-Text   Cite this paper   Add to My Lib


In this work, the potential of Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) imagery to map burned areas was evaluated in two study areas in Greece. For this purpose, we developed an object-based classification scheme to map the fire-disturbed areas using the PALSAR imagery acquired before and shortly after fire events. The advantage of employing an object-based approach was not only the use of the temporal variation of the backscatter coefficient, but also the incorporation in the classification of topological features, such as neighbor objects, and class related features, such as objects classified as burned. The classification scheme resulted in mapping the burned areas with satisfactory results: 0.71 and 0.82 probabilities of detection for the two study areas. Our investigation revealed that the pre-fire vegetation conditions and fire severity should be taken in consideration when mapping burned areas using PALSAR in Mediterranean regions. Overall, findings suggest that the developed scheme could be applied for rapid burned area assessment, especially to areas where cloud cover and fire smoke inhibit accurate mapping of burned areas when optical data are used.


[1]  Pérez-Cabello, F.; Echeverría, M.T.; Ibarra, P.; de la Riva, J. Effects of Fire on Vegetation, Soil and Hydrogeomorphological Behavior in Mediterranean Ecosystems. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer-Verlang: Berlin/Heidelberg, Germany, 2009; p. 112.
[2]  Chuvieco, E. Satellite Observation of Biomass Burning: Implications in Global Change Research. In Earth Observation of Global Change: The Role of Satellite Remote Sensing in Monitoring the Global Environment; Chuvieco, E., Ed.; Springer-Verlang: Berlin/Heidelberg, Germany, 2008; p. 111.
[3]  Koutsias, N.; Karteris, M.; Chuvieco, E. The use of intensity-hue-saturation transformation of Landsat-5 thematic mapper data for burned land mapping. Photogramm. Eng. Remote Sens 2000, 66, 829–839.
[4]  Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Alleaume, S.; Morisette, J.T.; Roy, D.P.; Petitecolin, F.; Descloitres, J.; Kaufman, Y. Global fire products from MODIS. Remote Sens. Environ 2002, 83, 245–263.
[5]  Roy, D.P.; Lewis, P.E.; Justice, C.O. Burned area mapping using multi-temporal moderate spatial resolution data—A bi-directional reflectance model-based expectation approach. Remote Sens. Environ 2002, 83, 263–286.
[6]  Mitri, G.H.; Gitas, I.Z. A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery. Int. J. Wildland Fire 2004, 12, 1–10.
[7]  Chuvieco, E.; Ventura, G.; Martín, M.P. AVHRR multitemporal compositing techniques for burned land mapping. In. J. Remote Sens 2005, 26, 1013–1018.
[8]  Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ 2008, 112, 1196–1211.
[9]  Hoekman, D.H.; Vissers, M.A.M.; Wielaard, N. PALSAR wide-area mapping of Borneo: Methodology and map validation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 605–617.
[10]  Kasischke, E.S.; Melack, J.M.; Dobson, M.C. The use of imaging radars for ecological applications—A review. Remote Sens. Environ 1997, 59, 141–156.
[11]  Bourgeau-Chavez, L.L.; Harrell, P.A.; Kasischke, E.S.; French, N.H.F. The detection and mapping of Alaskan wildfires using a spaceborne imaging radar system. Int. J. Remote Sens 1997, 18, 355–373.
[12]  Bourgeau-Chavez, L.L.; Kasischke, E.S.; Brunzell, S.; Mudd, J.P.; Tukman, M. Mapping fire scars in global boreal forests using imaging radar data. Int. J. Remote Sens 2002, 23, 4211–4234.
[13]  Siegert, F.; Hoffmann, A.A. The 1998 forest fires in East Kalimantan (Indonesia): A quantitative evaluation using high resolution, multitemporal ERS-2 SAR images and NOAA-AVHRR hotspot data. Remote Sens. Environ 2000, 72, 64–77.
[14]  Gimeno, M.; San-Miguel-Ayanz, J.; Schmuck, G. Identification of burnt areas in Mediterranean forest environments from ERS-2 SAR time series. Int. J. Remote Sens 2004, 25, 4873–4888.
[15]  French, N.H.F.; Kasischke, E.S.; Bourgeau-Chavez, L.L.; Harrel, P.A. Sensitivity of ERS-1 SAR to variations in soil water in fire disturbed boreal forest ecosystems. Int. J. Remote Sens 1996, 17, 3037–3053.
[16]  Huang, S.; Siegert, F. Backscatter change on fire scars in Siberian boreal forests in ENVISAT ASAR wide-swath images. IEEE Geosci. Remote Sens. Lett 2006, 3, 154–158.
[17]  Kasischke, E.S.; Tanase, M.A.; Bourgeau-Chavez, L.L.; Borr, M. Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data. Remote Sens. Environ 2011, 115, 227–232.
[18]  Siegert, F.; Ruecker, G. Use of multitemporal ERS-2 SAR images for identification of burned scars in south-east Asian tropical rainforest. Int. J. Remote Sens 2000, 21, 831–837.
[19]  Huang, S.; Siegert, F. ENVISAT multisensor data for fire monitoring and impact assessment. Int. J. Remote Sens 2004, 25, 4411–4416.
[20]  Ban, Y.; Hu, H.; Rangel, I.M. Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: Object-based and knowledge-based approach. Int. J. Remote Sens 2010, 31, 1391–1410.
[21]  Peters, J.; van Coillie, F.; Westra, T.; de Wulf, R. Synergy of very high resolution optical and radar data for object-based olive grove mapping. Int. J. Geogr. Inf. Sci 2011, 25, 971–989.
[22]  Bernhard, E.M.; Stein, E.; Twele, A.; G?hler, M. Synergistic Use of Optical and Radar Data for Rapid Mapping of Forest Fires in the European Mediterranean. Proceedings of ISPRS Workshop 2011, Hannover, Germany, 14–17 July 2011.
[23]  Thiel, C.J.; Thiel, C.; Schmullius, C.C. Operational large-area forest monitoring in Siberia using ALOS PALSAR summer intensities and winter coherence. IEEE Trans. Geosci. Remote Sens 2009, 47, 3993–4000.
[24]  Qi, Z.; Gar-On Yeh, A.; Li, X.; Lin, Z. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sens. Environ 2012, 118, 21–39.
[25]  Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens 2004, 58, 239–258.
[26]  Santoro, M.; Fransson, J.E.S.; Eriksson, L.E.B.; Ulander, L.M.H. Clear-cut detection in Swedish boreal forest using multi-temporal ALOS PALSAR backscatter data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 618–631.
[27]  Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett 2009, 36, 1–6.
[28]  Lucas, R.; Armston, J.; Fairfax, R.; Fensham, R.; Accad, A.; Carreiras, J.; Kelley, J.; Bunting, P.; Clewley, D.; Bray, S.; et al. An evaluation of the ALOS PALSAR L-band backscatter-above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2010, 3, 576–593.
[29]  Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—The potential of combined X- and L-band SAR data use. Remote Sens. Environ 2011, 115, 1260–1271.
[30]  Zuo, Y.; Ge, L.; Zhang, K. Evaluation of ALOS PALSAR applicability to generate bushfire scar maps. Proceedings of the 31st Asian Conference on Remote Sensing, Hanoi, Vietnam, 1–5 November 2010.
[31]  Mari, N.; Laneve, G.; Cadau, E.; Porcasi, X. Fire damage assessment in Sardinia: The use of ALOS/PALSAR data for post fire effects management. Eur. J. Remote Sens 2012, 45, 233–241.
[32]  Gitas, I.Z.; Polychronaki, A.; Katagis, T.; Mallinis, G. Contribution of remote sensing to disaster management activities: A case study of the large fires in the Peloponnese, Greece. Int. J. Remote Sens 2008, 29, 1847–1853.
[33]  CIAT-CSI SRTM Website. Available online: (accessed on 7 August 2013).
[34]  Harrell, P.A.; Bourgeau-Chavez, L.L.; Kasischke, E.S.; French, N.H.F.; Christensen, N.L.J. Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest. Remote Sens. Environ 1995, 54, 247–260.
[35]  Bourgeau-Chavez, L.L.; Kasischke, E.S.; Riordan, K.; Brunzell, S.; Nolan, M.; Hyer, E.; Slawski, J.; Medvecz, M.; Walters, T.; Ames, S. Remote monitoring of spatial and temporal surface soil moisture in fire disturbed boreal forest ecosystems with ERS SAR imagery. Int. J. Remote Sens 2007, 28, 2133–2162.
[36]  Chavez, P.S., Jr. Image-based atmospheric corrections-revisited and improved. Photogramm. Eng. Remote Sens 1996, 6, 1025–1036.
[37]  Sarmap Website. Available online: (accessed on 25 September 2013).
[38]  Alaska Satellite Facility. Available online: (accessed on 25 September 2013).
[39]  Dekker, R.J. Speckle filtering in satellite SAR change detection imagery. Int. J. Remote Sens 1998, 19, 1133–1146.
[40]  Almeida-Filho, R.; Shimabukuro, Y.E. Detecting areas disturbed by gold mining activities through JERS-1 SAR images, Roraima State, Brazilian Amazon. Int. J. Remote Sens 2000, 21, 3357–3362.
[41]  Bazi, Y.; Bruzzone, L.; Melgani, F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sen 2005, 43, 874–887.
[42]  Bovolo, F.; Bruzzone, L. A split-based approach to unsupervised change detection in large-size multitemporal images: Application to tsunami-damage assessment. IEEE Trans. Geosci. Remote Sen 2007, 45, 1658–1670.
[43]  Giglio, L.; Csiszar, I.; Restás, á; Morisette, J.T.; Schroeder, W.; Morton, D.; Justice, C.O. Active fire detection and characterization with the advanced spaceborne thermal emission and reflection radiometer (ASTER). Remote Sens. Environ 2008, 112, 3055–3063.
[44]  Rykhus, R.; Lu, Z. Monitoring a boreal wildfire using multi-temporal Radarsat-1 intensity and coherence images. Geomat. Nat. Hazards Risk 2011, 2, 15–32.
[45]  Key, C.; Benson, N. Landscape Assessment: Ground Measure of Severity; the Composite Burn Index, and Remote Sensing of Severity, the Normalized Burn Index. In FIREMON: Fire Effects Monitoring and Inventory System. General Technical Report RMRS-GTR-164-CD LA; Lutes, D., Kean, R., Caratti, J., Key, C., Benson, N., Sutherland, N., Gangi, L., Eds.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; pp. 1–51.
[46]  Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating Landsat Thematic Mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. Int. J. Wildland Fire 2010, 19, 558–569.
[47]  Walker, J.S.; Blaschke, T. Object-based land-cover classification for the Phoenix metropolitan area: Optimization vs. transportability. Int. J. Remote Sens 2008, 29, 2021–2040.
[48]  Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ 2011, 115, 1003–1012.
[49]  Polychronaki, A.; Gitas, I.Z. Burned area mapping in Greece using SPOT-4 HRVIR images and object-based image analysis. Remote Sens 2012, 4, 424–438.
[50]  eCognition Developer 8.7 Reference Book; Trimble Documentation; Trimble Germany GmbH: München, Germany, 2011.
[51]  McNairn, H.; Shang, J.; Jiao, X.; Champagne, C. The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. IEEE Trans. Geosci. Remote Sens 2009, 47, 3981–3992.
[52]  French, N.H.F.; Bourgeau-Chavez, L.L.; Wang, Y.; Kasischke, E.S. Initial observations of Radarsat imagery at fire-disturbed sites in interior Alaska. Remote Sens. Environ 1999, 68, 89–94.
[53]  Small, D. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens 2011, 49, 3081–3093.
[54]  Kasischke, E.S.; Bourgeau-Chavez, L.L.; Johnstone, J.F. Assessing spatial and temporal variations in surface soil moisture in fire-disturbed black spruce forests in Interior Alaska using spaceborne synthetic aperture radar imagery-Implications for post-fire tree recruitment. Remote Sens. Environ 2007, 108, 42–58.
[55]  Ulaby, F.T.; Batlivala, P.P.; Dobson, M.C. Microwave backscatter dependence on surface-roughness, soil-moisture, and soil texture: Part-1 Bare soil. IEEE Trans. Geosci. Remote Sens 1978, 16, 286–295.


comments powered by Disqus

Contact Us


微信:OALib Journal