All Title Author
Keywords Abstract

PLOS ONE  2014 

Body Fat Percentage Is a Major Determinant of Total Bilirubin Independently of UGT1A1*28 Polymorphism in Young Obese

DOI: 10.1371/journal.pone.0098467

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives Bilirubin has potential antioxidant and anti-inflammatory properties. The UGT1A1*28 polymorphism (TA repeats in the promoter region) is a major determinant of bilirubin levels and recent evidence suggests that raised adiposity may also be a contributing factor. We aimed to study the interaction between UGT1A1 polymorphism, hematological and anthropometric variables with total bilirubin levels in young individuals. Methods 350 obese (mean age of 11.6 years; 52% females) and 79 controls (mean age of 10.5 years; 59% females) were included. Total bilirubin and C-reactive protein (CRP) plasma levels, hemogram, anthropometric data and UGT1A1 polymorphism were determined. In a subgroup of 74 obese and 40 controls body composition was analyzed by dual-energy X-ray absorptiometry. Results The UGT1A1 genotype frequencies were 49.9%, 42.7% and 7.5% for 6/6, 6/7 and 7/7 genotypes, respectively. Patients with 7/7 genotype presented the highest total bilirubin levels, followed by 6/7 and 6/6 genotypes. Compared to controls, obese patients presented higher erythrocyte count, hematocrit, hemoglobin and CRP levels, but no differences in bilirubin or in UGT1A1 genotype distribution. Body fat percentage was inversely correlated with bilirubin in obese patients but not in controls. This inverse association was observed either in 6/7 or 6/6 genotype obese patients. UGT1A1 polymorphism and body fat percentage were the main factors affecting bilirubin levels within obese patients (linear regression analysis). Conclusion In obese children and adolescents, body fat composition and UGT1A1 polymorphism are independent determinants of total bilirubin levels. Obese individuals with 6/6 UGT1A1 genotype and higher body fat mass may benefit from a closer clinical follow-up.

References

[1]  Fevery J (2008) Bilirubin in clinical practice: a review. Liver Int 28: 592–605. doi: 10.1111/j.1478-3231.2008.01716.x
[2]  Gong QH, Cho JW, Huang T, Potter C, Gholami N, et al. (2001) Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 11: 357–368. doi: 10.1097/00008571-200106000-00011
[3]  Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, et al. (1995) The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert’s syndrome. N Engl J Med 333: 1171–1175. doi: 10.1056/nejm199511023331802
[4]  Beutler E, Gelbart T, Demina A (1998) Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism? Proc Natl Acad Sci U S A 95: 8170–8174. doi: 10.1073/pnas.95.14.8170
[5]  Kaniwa N, Kurose K, Jinno H, Tanaka-Kagawa T, Saito Y, et al. (2005) Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686C>T (P229L) found in an African-American. Drug Metab Dispos 33: 458–465. doi: 10.1124/dmd.104.001800
[6]  Clementi M, Di Gianantonio E, Fabris L, Forabosco P, Strazzabosco M, et al. (2007) Inheritance of hyperbilirubinemia: evidence for a major autosomal recessive gene. Dig Liver Dis 39: 351–355. doi: 10.1016/j.dld.2006.12.019
[7]  Tiribelli C, Ostrow JD (2005) The molecular basis of bilirubin encephalopathy and toxicity: report of an EASL Single Topic Conference, Trieste, Italy, 1–2 October, 2004. J Hepatol 43: 156–166. doi: 10.1016/j.jhep.2005.04.003
[8]  Gourley GR (1997) Bilirubin metabolism and kernicterus. Adv Pediatr 44: 173–229.
[9]  Wu TW, Fung KP, Wu J, Yang CC, Weisel RD (1996) Antioxidation of human low density lipoprotein by unconjugated and conjugated bilirubins. Biochem Pharmacol 51: 859–862. doi: 10.1016/0006-2952(95)02395-x
[10]  Weinberger B, Archer FE, Kathiravan S, Hirsch DS, Kleinfeld AM, et al. (2013) Effects of bilirubin on neutrophil responses in newborn infants. Neonatology 103: 105–111. doi: 10.1159/000343097
[11]  Lin JP, O’Donnell CJ, Schwaiger JP, Cupples LA, Lingenhel A, et al. (2006) Association between the UGT1A1*28 allele, bilirubin levels, and coronary heart disease in the Framingham Heart Study. Circulation 114: 1476–1481. doi: 10.1161/circulationaha.106.633206
[12]  Novotny L, Vitek L (2003) Inverse relationship between serum bilirubin and atherosclerosis in men: a meta-analysis of published studies. Exp Biol Med (Maywood) 228: 568–571.
[13]  Horsfall LJ, Nazareth I, Petersen I (2012) Cardiovascular events as a function of serum bilirubin levels in a large, statin-treated cohort. Circulation 126: 2556–2564. doi: 10.1161/circulationaha.112.114066
[14]  Temme EH, Zhang J, Schouten EG, Kesteloot H (2001) Serum bilirubin and 10-year mortality risk in a Belgian population. Cancer Causes Control 12: 887–894. doi: 10.1023/a:1013794407325
[15]  Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, et al. (2012) Hyperbilirubinemia, augmentation of endothelial function, and decrease in oxidative stress in Gilbert syndrome. Circulation 126: 598–603. doi: 10.1161/circulationaha.112.105775
[16]  Nascimento H, Costa E, Rocha-Pereira P, Rego C, Mansilha HF, et al. (2012) Cardiovascular risk factors in portuguese obese children and adolescents: impact of small reductions in body mass index imposed by lifestyle modifications. Open Biochem J 6: 43–50. doi: 10.2174/1874091x01206010043
[17]  Padez C, Fernandes T, Mourao I, Moreira P, Rosado V (2004) Prevalence of overweight and obesity in 7–9-year-old Portuguese children: trends in body mass index from 1970–2002. Am J Hum Biol 16: 670–678. doi: 10.1002/ajhb.20080
[18]  Alexander CM, Landsman PB, Grundy SM (2008) The influence of age and body mass index on the metabolic syndrome and its components. Diabetes Obes Metab 10: 246–250. doi: 10.1111/j.1463-1326.2006.00695.x
[19]  Hwang HJ, Kim SH (2010) Inverse relationship between fasting direct bilirubin and metabolic syndrome in Korean adults. Clin Chim Acta 411: 1496–1501. doi: 10.1016/j.cca.2010.06.003
[20]  Jo J, Yun JE, Lee H, Kimm H, Jee SH (2011) Total, direct, and indirect serum bilirubin concentrations and metabolic syndrome among the Korean population. Endocrine 39: 182–189. doi: 10.1007/s12020-010-9417-2
[21]  Wu Y, Li M, Xu M, Bi Y, Li X, et al. (2011) Low serum total bilirubin concentrations are associated with increased prevalence of metabolic syndrome in Chinese. J Diabetes 3: 217–224. doi: 10.1111/j.1753-0407.2011.00138.x
[22]  Lin LY, Kuo HK, Hwang JJ, Lai LP, Chiang FT, et al. (2009) Serum bilirubin is inversely associated with insulin resistance and metabolic syndrome among children and adolescents. Atherosclerosis 203: 563–568. doi: 10.1016/j.atherosclerosis.2008.07.021
[23]  Devries MC, Samjoo IA, Hamadeh MJ, Tarnopolsky MA (2008) Effect of endurance exercise on hepatic lipid content, enzymes, and adiposity in men and women. Obesity (Silver Spring) 16: 2281–2288. doi: 10.1038/oby.2008.358
[24]  Jenko-Praznikar Z, Petelin A, Jurdana M, Ziberna L (2013) Serum bilirubin levels are lower in overweight asymptomatic middle-aged adults: an early indicator of metabolic syndrome? Metabolism 62: 976–985. doi: 10.1016/j.metabol.2013.01.011
[25]  Olerup O, Zetterquist H (1992) HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39: 225–235. doi: 10.1111/j.1399-0039.1992.tb01940.x
[26]  Gaffney D, Campbell RA (1994) A PCR based method to determine the Kalow allele of the cholinesterase gene: the E1k allele frequency and its significance in the normal population. J Med Genet 31: 248–250. doi: 10.1136/jmg.31.3.248
[27]  Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412–419. doi: 10.1007/bf00280883
[28]  Rocha S, Costa E, Ferreira F, Cleto E, Barbot J, et al. (2010) Hereditary spherocytosis and the (TA)nTAA polymorphism of UGT1A1 gene promoter region–a comparison of the bilirubin plasmatic levels in the different clinical forms. Blood Cells Mol Dis 44: 117–119. doi: 10.1016/j.bcmd.2009.10.012
[29]  Karatzas A, Giannatou E, Tzortzis V, Gravas S, Aravantinos E, et al. (2010) Genetic polymorphisms in the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene and prostate cancer risk in Caucasian men. Cancer Epidemiol 34: 345–349. doi: 10.1016/j.canep.2010.02.009
[30]  Ostanek B, Furlan D, Mavec T, Lukac-Bajalo J (2007) UGT1A1(TA)n promoter polymorphism–a new case of a (TA)8 allele in Caucasians. Blood Cells Mol Dis 38: 78–82. doi: 10.1016/j.bcmd.2006.10.160
[31]  Rodrigues C, Vieira E, Santos R, de Carvalho J, Santos-Silva A, et al. (2012) Impact of UGT1A1 gene variants on total bilirubin levels in Gilbert syndrome patients and in healthy subjects. Blood Cells Mol Dis 48: 166–172. doi: 10.1016/j.bcmd.2012.01.004
[32]  Yip R, Johnson C, Dallman PR (1984) Age-related changes in laboratory values used in the diagnosis of anemia and iron deficiency. Am J Clin Nutr 39: 427–436.
[33]  Chauhan A, Grissom M (2013) Disorders of childhood growth and development: precocious puberty. FP Essent 410: 25–31.
[34]  Wonisch W, Falk A, Sundl I, Winklhofer-Roob BM, Lindschinger M (2012) Oxidative stress increases continuously with BMI and age with unfavourable profiles in males. Aging Male 15: 159–165. doi: 10.3109/13685538.2012.669436
[35]  Andersson C, Weeke P, Fosbol EL, Brendorp B, Kober L, et al. (2009) Acute effect of weight loss on levels of total bilirubin in obese, cardiovascular high-risk patients: an analysis from the lead-in period of the Sibutramine Cardiovascular Outcome trial. Metabolism 58: 1109–1115. doi: 10.1016/j.metabol.2009.04.003
[36]  Coimbra S, Catarino C, Santos-Silva A (2013) The role of adipocytes in the modulation of iron metabolism in obesity. Obes Rev 14: 771–779. doi: 10.1111/obr.12057
[37]  Taube A, Schlich R, Sell H, Eckardt K, Eckel J (2012) Inflammation and metabolic dysfunction: links to cardiovascular diseases. Am J Physiol Heart Circ Physiol 302: H2148–2165. doi: 10.1152/ajpheart.00907.2011
[38]  Greco EA, Francomano D, Fornari R, Marocco C, Lubrano C, et al. (2013) Negative association between trunk fat, insulin resistance and skeleton in obese women. World J Diabetes 4: 31–39. doi: 10.4239/wjd.v4.i2.31
[39]  Bondia-Pons I, Ryan L, Martinez JA (2012) Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem 68: 701–711. doi: 10.1007/s13105-012-0154-2
[40]  D’nArchivio M, Annuzzi G, Vari R, Filesi C, Giacco R, et al. (2012) Predominant role of obesity/insulin resistance in oxidative stress development. Eur J Clin Invest 42: 70–78. doi: 10.1111/j.1365-2362.2011.02558.x
[41]  Hwang HJ, Lee SW, Kim SH (2011) Relationship between bilirubin and C-reactive protein. Clin Chem Lab Med 49: 1823–1828.
[42]  Ohnaka K, Kono S, Inoguchi T, Yin G, Morita M, et al. (2010) Inverse associations of serum bilirubin with high sensitivity C-reactive protein, glycated hemoglobin, and prevalence of type 2 diabetes in middle-aged and elderly Japanese men and women. Diabetes Res Clin Pract 88: 103–110. doi: 10.1016/j.diabres.2009.12.022
[43]  Yoshino S, Hamasaki S, Ishida S, Kataoka T, Yoshikawa A, et al. (2011) Relationship between bilirubin concentration, coronary endothelial function, and inflammatory stress in overweight patients. J Atheroscler Thromb 18: 403–412. doi: 10.5551/jat.6346
[44]  Yu K, Kim C, Sung E, Shin H, Lee H (2011) Association of Serum Total Bilirubin with Serum High Sensitivity C-reactive Protein in Middle-aged Men. Korean J Fam Med 32: 327–333. doi: 10.4082/kjfm.2011.32.6.327
[45]  Abraham NG, Tsenovoy PL, McClung J, Drummond GS (2008) Heme oxygenase: a target gene for anti-diabetic and obesity. Curr Pharm Des 14: 412–421. doi: 10.2174/138161208783597371
[46]  Bruce CR, Carey AL, Hawley JA, Febbraio MA (2003) Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes 52: 2338–2345. doi: 10.2337/diabetes.52.9.2338
[47]  Chang CL, Au LC, Huang SW, Fai Kwok C, Ho LT, et al. (2011) Insulin up-regulates heme oxygenase-1 expression in 3T3-L1 adipocytes via PI3-kinase- and PKC-dependent pathways and heme oxygenase-1-associated microRNA downregulation. Endocrinology 152: 384–393. doi: 10.1210/en.2010-0493
[48]  Nascimento H, Silva L, Lourenco P, Weinfurterova R, Castro E, et al. (2009) Lipid profile in Portuguese obese children and adolescents: interaction of apolipoprotein E polymorphism with adiponectin levels. Arch Pediatr Adolesc Med 163: 1030–1036. doi: 10.1001/archpediatrics.2009.190
[49]  Swift DL, Johannsen NM, Earnest CP, Blair SN, Church TS (2012) Effect of different doses of aerobic exercise training on total bilirubin levels. Med Sci Sports Exerc 44: 569–574. doi: 10.1249/mss.0b013e3182357dd4

Full-Text

comments powered by Disqus