All Title Author
Keywords Abstract

PLOS ONE  2014 

Interferon Tau Alleviates Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance by Regulating Macrophage Polarization

DOI: 10.1371/journal.pone.0098835

Full-Text   Cite this paper   Add to My Lib


Chronic adipose tissue inflammation is a hallmark of obesity-induced insulin resistance and anti-inflammatory agents can benefit patients with obesity-associated syndromes. Currently available type I interferons for therapeutic immunomodulation are accompanied by high cytotoxicity and therefore in this study we have examined anti-inflammatory effects of interferon tau (IFNT), a member of the type I interferon family with low cellular toxicity even at high doses. Using a diet-induced obesity mouse model, we observed enhanced insulin sensitivity in obese mice administered IFNT compared to control mice, which was accompanied by a significant decrease in secretion of proinflammatory cytokines and elevated anti-inflammatory macrophages (M2) in adipose tissue. Further investigations revealed that IFNT is a potent regulator of macrophage activation that favors anti-inflammatory responses as evidenced by activation of associated surface antigens, production of anti-inflammatory cytokines, and activation of selective cell signaling pathways. Thus, our study demonstrates, for the first time, that IFNT can significantly mitigate obesity-associated systemic insulin resistance and tissue inflammation by controlling macrophage polarization, and thus IFNT can be a novel bio-therapeutic agent for treating obesity-associated syndromes and type 2 diabetes.


[1]  Johnson AM, Olefsky JM (2013) The origins and drivers of insulin resistance. Cell 152: 673–684. doi: 10.1016/j.cell.2013.01.041
[2]  Xu H, Barnes GT, Yang Q, Tan G, Yang D, et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112: 1821–1830. doi: 10.1172/jci200319451
[3]  Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa KI, et al. (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116: 1494–1505. doi: 10.1172/jci26498
[4]  Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, et al. (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat med 15: 914–920. doi: 10.1038/nm.1964
[5]  Rocha VZ, Folco EJ, Sukhova G, Shimizu K, Gotsman I, et al. (2008) Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ Res 103: 467–476. doi: 10.1161/circresaha.108.177105
[6]  Winer DA, Winer S, Shen L, Wadia PP, Yantha J, et al. (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17: 610–617. doi: 10.1038/nm.2353
[7]  Lee YS, Li PP, Huh JY, Hwang IJ, Lu M, et al. (2011) Inflammation Is Necessary for Long-Term but Not Short-Term High-Fat Diet Induced Insulin Resistance. Diabetes60: 2474–2483. doi: 10.2337/db11-0194
[8]  Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, et al. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796–1808. doi: 10.1172/jci200319246
[9]  Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR (2007) Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes56: 16–23. doi: 10.2337/db06-1076
[10]  Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol72: 219–246. doi: 10.1146/annurev-physiol-021909-135846
[11]  Le KA, Mahurkar S, Alderete TL, Hasson RE, Adam TC, et al. (2011) Subcutaneous adipose tissue macrophage infiltration is associated with hepatic and visceral fat deposition, hyperinsulinemia, and stimulation of NF-kappaB stress pathway. Diabetes 60: 2802–2809. doi: 10.2337/db10-1263
[12]  Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117: 175–184. doi: 10.1172/jci29881
[13]  Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, et al. (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447: 1116–1120. doi: 10.1038/nature05894
[14]  Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13: 11–22. doi: 10.1016/j.cmet.2010.12.008
[15]  Charo IF (2007) Macrophage polarization and insulin resistance: PPARgamma in control. Cell Metab 6: 96–98. doi: 10.1016/j.cmet.2007.07.006
[16]  Liu YW, Tseng HP, Chen LC, Chen BK, Chang WC (2003) Functional cooperation of simian virus 40 promoter factor 1 and CCAAT/enhancer-binding protein beta and delta in lipopolysaccharide-induced gene activation of IL-10 in mouse macrophages. J Immunol171: 821–828. doi: 10.4049/jimmunol.171.2.821
[17]  Gorgoni B, Maritano D, Marthyn P, Righi M, Poli V (2002) C/EBP beta gene inactivation causes both impaired and enhanced gene expression and inverse regulation of IL-12 p40 and p35 mRNAs in macrophages. J Immunol 168: 4055–4062. doi: 10.4049/jimmunol.168.8.4055
[18]  Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, et al. (2012) A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation125: 2892–2903. doi: 10.1161/circulationaha.111.087817
[19]  Wang M, Tafuri S (2003) Modulation of PPARgamma activity with pharmaceutical agents: treatment of insulin resistance and atherosclerosis. J Cell Biochem 89: 38–47. doi: 10.1002/jcb.10492
[20]  Barbuio R, Milanski M, Bertolo MB, Saad MJ, Velloso LA (2007) Infliximab reverses steatosis and improves insulin signal transduction in liver of rats fed a high-fat diet. J Clin Endocr 194: 539–550. doi: 10.1677/joe-07-0234
[21]  Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29: 415–445. doi: 10.1146/annurev-immunol-031210-101322
[22]  Odegaard JI, Chawla A (2011) Alternative macrophage activation and metabolism. Annu Rev Pathol 6: 275–297. doi: 10.1146/annurev-pathol-011110-130138
[23]  Spencer M, Finlin BS, Unal R, Zhu B, Morris AJ, et al. (2013) Omega-3 fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes 62: 1709–1717. doi: 10.2337/db12-1042
[24]  Gonzalez-Navajas JM, Lee J, David M, Raz E (2012) Immunomodulatory functions of type I interferons. Nat Rev Immunol 12: 125–135. doi: 10.1038/nri3133
[25]  Benveniste EN, Qin H (2007) Type I interferons as anti-inflammatory mediators. Sci STKE 416: pe70. doi: 10.1126/stke.4162007pe70
[26]  Bosca L, Bodelon OG, Hortelano S, Casellas A, Bosch F (2000) Anti-inflammatory action of type I interferons deduced from mice expressing interferon beta. Gene Ther 7: 817–825. doi: 10.1038/
[27]  Sleijfer S, Bennink M, Van Gool AR, Kruit WH, Stoter G (2005) Side effects of interferon-α therapy. Pharm World Sci 27: 423–431. doi: 10.1007/s11096-005-1319-7
[28]  Jongen PJ, Sindic C, Sanders E, Hawkins S, Linssen W, et al. (2011) Adverse events of interferon beta-1a: A prospective muli-centre international ICH-GCP-based CRO-supported external validation study in daily practice. PLoS ONE 6(10): e26568. doi: 10.1371/journal.pone.0026568
[29]  Bazer FW, Kim J, Song G, Ka H, Tekwe CD, et al. (2012) Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development. Ann NY Acad Sci 1271: 88–96. doi: 10.1111/j.1749-6632.2012.06741.x
[30]  Chon TW, Bixler S (2010) Interferon-tau: current applications and potential in antiviral therapy. J Interferon Cytokine Res 30: 477–485. doi: 10.1089/jir.2009.0089
[31]  Pontzer CH, Bazer FW, Johnson HM (1991) Antiproliferative activity of a pregnancy recognition hormone, ovine trophoblast protein-1. Cancer Res 51: 5304–5307.
[32]  Soos JM, Subramaniam PS, Hobeika AC, Schiffenbauer J, Johnson HM (1995) The IFN pregnancy recognition hormone IFN-tau blocks both development and superantigen reactivation of experimental allergic encephalomyelitis without associated toxicity. JImmunol 155: 2747–2753.
[33]  Sobel DO, Ahvazi B, Amjad F, Mitnaul L, Pontzer C (2008) Interferon-tau inhibits the development of diabetes in NOD mice. Autoimmunity 41: 543–553. doi: 10.1080/08916930802194195
[34]  Soos JM, Stuve O, Youssef S, Bravo M, Johnson HM, et al. (2002) Cutting edge: oral type I IFN-tau promotes a Th2 bias and enhances suppression of autoimmune encephalomyelitis by oral glatiramer acetate. J Immunol 169: 2231–2235. doi: 10.4049/jimmunol.169.5.2231
[35]  Antoniazzi AQ, Webb BT, Romero JJ, Ashley RL, Smirnova NP, et al. (2013) Endocrine delivery of interferon tau protects the corpus luteum from prostaglandin F2 alpha-induced luteolysis in ewes. Biol Reprod 88: 1–12. doi: 10.1095/biolreprod.112.105684
[36]  Ying W, Cheruku PS, Bazer FW, Safe SH, Zhou B (2013) Investigation of macrophage polarization using bone marrow derived macrophages. J Vis Exp 76: e50323. doi: 10.3791/50323
[37]  Tekwe CD, Lei J, Yao K, Rezaei R, Li X, et al. (2013) Oral administration of interferon tau enhances oxidation of energy substrates and reduces adiposity in Zucker diabetic fatty rats. BioFactors39: 552–563. doi: 10.1002/biof.1113
[38]  Trinchieri G (2010) Type I interferon: friend or foe? JEM 207: 2053–2063. doi: 10.1084/jem.20101664
[39]  Roberts RM (2007) Interferon-tau, a Type 1 interferon involved in maternal recognition of pregnancy. Cytokine Growth Factor Rev 18: 403–408. doi: 10.1016/j.cytogfr.2007.06.010


comments powered by Disqus

Contact Us


微信:OALib Journal