Streptomyces ahygroscopicus ZB01 can effectively oxidize 4″-OH of avermectin to form 4″-oxo-avermectin. CYP107Z13 is responsible for this site-specific oxidation in ZB01. In the present study, we explored the electron transfer pathway in oxidation of avermectin by CYP107Z13 in ZB01. A putative [3Fe-4S] ferredoxin gene fd68 and two possible NADH-dependent ferredoxin reductase genes fdr18 and fdr28 were cloned from the genomic DNA of ZB01. fd68 gene disruption mutants showed no catalytic activity in oxidation of avermectin to form 4″-oxo-avermectin. To clarify whether FdR18 and FdR28 participate in the electron transfer during avermectin oxidation by CYP107Z13, two whole-cell biocatalytic systems were designed in E. coli BL21 (DE3), with one co-expressing CYP107Z13, Fd68 and FdR18 and the other co-expressing CYP107Z13, Fd68 and FdR28. Both of the two biocatalytic systems were found to be able to mediate the oxidation of avermectin to form 4″-oxo-avermectin. Thus, we propose an electron transfer pathway NADH→FdR18/FdR28→Fd68→CYP107Z13 for oxidation of avermectin to form 4″-oxo-avermectin in ZB01.
References
[1]
Li M. Zeng F (2008) Research Progress of Streptomyces Cytochrome P450. Microbiol china 35: 1107–1112.
[2]
Choi KY, Jung EO, Yun H, Yang YH, Kazlauskas RJ, et al. (2013) Development of colorimetric HTS assay of cytochrome P450 for ortho-specific hydroxylation, and engineering of CYP102D1 with enhanced catalytic activity and regioselectivity. Chembiochem14: 1231–1238. doi: 10.1002/cbic.201300212
[3]
Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124(1): 128–145. doi: 10.1016/j.jbiotec.2006.01.026
[4]
Molnár I, Hill DS, Zirkle R, Hammer PE, Gross F, et al. (2005) Biocatalytic conversion of avermectin to 4″-oxo-avermectin: heterologous expression of the ema1 cytochrome P450 monooxygenase. Appl Environ Microbiol 71: 6977–6985. doi: 10.1128/aem.71.11.6977-6985.2005
[5]
Molnár I, Jungmann V, Stege J, Trefzer A, Pachlatko JP (2006) Biocatalytic conversion of avermectin to 4″-oxo-avermectin: discovery, characterization, heterologous expression and specificity improvement of the cytochrome P450 enzyme. Biochem Soc Trans 34: 1236–1240. doi: 10.1042/bst0341236
[6]
van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, et al. (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72: 59–65. doi: 10.1128/aem.72.1.59-65.2006
[7]
Yong N, Jie-Liang L, Hui F, Yue-Qin T, Xiao-Lei W (2014) Characterization of a CYP153 alkane hydroxylase gene in a Gram-positive Dietzia sp. DQ12-45-1b and its “team role” with alkW1 in alkane degradation. Appl Microbiol Biotechnol 98(1): 163–173. doi: 10.1007/s00253-013-4821-1
[8]
Bell SG, Tan AB, Johnson EO, Wong LL (2010b) Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. Mol Biosyst J 6(1): 206–214. doi: 10.1039/b913487e
[9]
Ramachandra M, Seetharam R, Emptage MH, Sariaslani FS (1991) Purification and characterization of a soybean flour-inducible ferredoxin reductase of Streptomyces griseus. J Bacteriol 173: 7106–7112.
[10]
Kleser M, Hannemann F, Hutter M, Zapp J, Bernhardt R (2012) CYP105A1 mediated 3-hydroxylation of glimepiride and glibenclamide using a recombinant Bacillus megaterium whole-cell catalyst. J Biotechnol 157: 405–412. doi: 10.1016/j.jbiotec.2011.12.006
[11]
Bell SG, Dale A, Rees NH, Wong LL (2010) A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans. Appl Microbiol Biotechnol 86: 163–175. doi: 10.1007/s00253-009-2234-y
[12]
Chun YJ, Shimada T, Waterman MR, Guengerich FP (2006) Understanding electron transport systems of Streptomyces cytochrome P450. Biochem Soc Trans 34: 1183–1185. doi: 10.1042/bst0341183
[13]
Green AJ, Munro AW, Cheesman MR, Reid GA, Wachenfeldt von C, et al. (2003) Expression, purification and characterisation of a Bacillus subtilis ferredoxin: A potential electron transfer donor to cytochrome P450. BioI J Inorg Biochem 93: 92–99. doi: 10.1016/s0162-0134(02)00456-7
[14]
Shrestha P, Oh TJ, Sohng JK (2008) Cytochrome P450 (CYP105F2) from Streptomyces peucetius and its activity with oleandomycin. Appl Microbiol Biotechnol 79(4): 555–562. doi: 10.1007/s00253-008-1455-9
[15]
Roh C, Choi KY, Pandey BP, Kim BG (2009) Hydroxylation of daidzein by CYP107H1 from Bacillus subtilis 168. J Mol Cata B-Enzym 59: 248–253. doi: 10.1016/j.molcatb.2008.07.005
[16]
Cornelissen S, Julsing MK, Volmer J, Riechert O, Schmid A, et al. (2013) Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Biotechnol Bioeng 110(5): 1282–1292. doi: 10.1002/bit.24801
[17]
Liu WD, Jiang XL, Ji Y, Niu J, Li M (2011) Cloning and prokaryotic expression of cyp107z gene from Streptomyces ahygroscopicus ZB01. Acta Microbiol Sin 51: 410–416.
[18]
Jiang XL, Liu WD, Ji Y, Niu J, Li M (2012) Expression of CYP107Z13 in Streptomyces lividans TK54 catalyzes the oxidation of avermectin to 4″-oxo-avermectin. Appl Microbiol Biotechnol 93: 1957–1963. doi: 10.1007/s00253-011-3490-1
[19]
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich.
[20]
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
[21]
Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, et al. (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43–49. doi: 10.1016/0378-1119(92)90627-2
[22]
Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, et al.. (1985) Genetic manipulation of Streptomyces. A laboratory manual. The John Innes Foundation, Norwich.
[23]
Kirsty JM, Nigel SS, Andrew WM (2003) Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. Biochem J 372 (Pt 2): 317–327. doi: 10.1042/bj20021692
[24]
Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 4: 557–580. doi: 10.1016/s0022-2836(83)80284-8
[25]
Sielaff B, Andreesen JR (2005) Analysis of the nearly identical morpholine monooxygenase- encoding mor genes from different Mycobacterium strains and characterization of the specific NADH: ferredoxin oxidoreductase of this cytochrome P450 system. Microbio 151: 2593–2603. doi: 10.1099/mic.0.28039-0
[26]
Chun YJ, Shimada T, Sanchez-Ponce R, Martin MV, Lei L, et al. (2007) Electron transport pathway for a Streptomyces cytochrome P450. J Biol Chem 282: 17486–17500. doi: 10.1074/jbc.m700863200
[27]
Parajuli N, Basnet DB, Lee HC, Sohng JK, Liou K (2004) Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch Biochem Biophys 425: 233–241. doi: 10.1016/j.abb.2004.03.011
[28]
Lamb DC, Ikeda H, Nelson DR, Ishikawa J, Skaug T, et al. (2003) Cytochrome P450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem Biophys Res Comm 307: 610–619. doi: 10.1016/s0006-291x(03)01231-2
[29]
Sevrioukova IF, Poulos TL (2011) Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system. Arch Biochem Biophys 507: 66–74. doi: 10.1016/j.abb.2010.08.022
[30]
Lim YR, Hong MK, Kim JK, Doan TT, Kim DH, et al. (2012) Crystal structure of cytochrome P450 CYP105N1 from Streptomyces coelicolor, an oxidase in the coelibactin siderophore biosynthetic pathway. Arch Biochem Biophys 528: 111–117. doi: 10.1016/j.abb.2012.09.001
[31]
Gruez A, Pignol D, Zeghouf M, Coves J, Fontecave M, et al. (2000) Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin–like module. J Mol Biol 299: 199–212. doi: 10.1006/jmbi.2000.3748
[32]
Pramod S, Tae-Jin O, Jae KS (2008) Designing a whole-cell biotransformation system in Escherichia coli using cytochrome P450 from Streptomyces peucetius. Biotechnol Lett 30: 1100–1106. doi: 10.1007/s10529-008-9654-0
[33]
Joo YC, Jeong KW, Yeom SJ, Kim YS, Kim Y, et al. (2012) Biochemical characterization and FAD– binding analysis of oleate hydratase from Macrococcus caseolyticus. Biochimie 94: 907–915. doi: 10.1016/j.biochi.2011.12.011
[34]
Peterson JA, Lorence MC, Amarneh B (1990) Putidaredoxin reductase and putidaredoxin - cloning, sequence determination, and heterologous expression of the proteins. J Biol Chem 265: 6066–6073.
[35]
Boyd JM, Endrizzi JA, Hamilton TL, Christopherson MR, Mulder DW, et al. (2011) FAD binding by ApbE protein from Salmonella enterica: a new class of FAD-binding proteins. J Bacteriol 193: 887–895. doi: 10.1128/jb.00730-10
[36]
Qiao F, Zhang JM, Bai YL, Yang XY, Li CR, et al. (2012) Analysis of the role of FdrA and FprA in CYP125A1’s electron transfer chain, two ferredoxin reductases in Mycobacterium tuberculosis. Chin Med Biotechnol 7: 178–186.
[37]
Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 4: 419–425. doi: 10.1016/s0958-1669(00)00237-8
[38]
Huang MH, Tian YQ, Lu Q (2010) Protease electron transport pathway and whole-cell transformation system in Streptomyces P450. J Micobiology 1: 75–79.