All Title Author
Keywords Abstract

PLOS ONE  2014 

Insulin-Like Growth Factor-1 as a Prognostic Marker in Patients with Acute Ischemic Stroke

DOI: 10.1371/journal.pone.0099186

Full-Text   Cite this paper   Add to My Lib


Objective Insulin-like growth factor-1 (IGF-1) has been associated with cardiovascular risk factors and atherosclerosis. The aim of the present study was to evaluate the prognostic value of IGF-1 levels in patients with acute ischemic stroke (AIS). Methods All patients with first-ever AIS from August 1, 2012 to August 31, 2013 were recruited to participate in the study. Clinical data were collected. The National Institutes of Health Stroke Scale (NIHSS) score was assessed on admission blinded to serum IGF-1 levels. For the assessment of functional outcome at 90 days Modified Rankin Scale (mRS) was used. On admission, serum IGF-1 levels were determined by chemiluminescence immunoassay. The influence of IGF-1 levels on functional outcome and death was assessed by multivariate logistic regression analysis. Results Patients with an unfavorable outcomes and non-survivors had significantly decreased serum IGF-1 levels on admission (P<0.0001 for both). IGF-1 was an independent prognostic marker of functional outcome and death [odds ratio 0.89 (0.84–0.93) and 0.90 (0.84–0.95), respectively, P<0.0001 for both, adjusted for age, NIHSS score and other predictors] in patients with ischemic stroke. Serum IGF-1 levels ≤130 ng/mL was as an value indicator for unfavorable functional outcome (OR 3.31, 95% CI:1.87–5.62; P<0.0001), after adjusting for other significant confounders. Conclusions We reported a significant association between low serum IGF-1 levels and unfavorable functional outcome and death.


[1]  Bonita R, Mendis S, Truelsen T, Bogousslavsky J, Toole J, et al. (2004) The global stroke initiative. Lancet Neurol 3(7): 391–393. doi: 10.1016/s1474-4422(04)00800-2
[2]  Mehta S, Livingstone C, Borai A, Ferns G (2012) Insulin-like growth factor binding protein-1 in insulin resistance and cardiovascular disease. The British Journal of Diabetes & Vascular Disease 12(1): 17–25. doi: 10.1177/1474651412436701
[3]  LeRoith D, Roberts Jr CT (2003) The insulin-like growth factor system and cancer. Cancer letters 195(2): 127–137. doi: 10.1016/s0304-3835(03)00159-9
[4]  Duron E, Funalot B, Brunel N, Coste J, Quinquis L, et al. (2012) Insulin-like growth factor-I and insulin-like growth factor binding protein-3 in Alzheimer's disease. J Clin Endocrinol Metab 97(12): 4673–4681. doi: 10.1210/jc.2012-2063
[5]  Yeap BB, Paul Chubb SA, Lopez D, Ho KK, Hankey GJ, et al. (2013) Associations of insulin-like growth factor-I and its binding proteins and testosterone with frailty in older men. Clinical endocrinology 78(5): 752–759. doi: 10.1111/cen.12052
[6]  Bayes-Genis A, Conover CA, Schwartz RS (2000) The Insulin-Like Growth Factor Axis A Review of Atherosclerosis and Restenosis. Circulation research 86(2): 125–130. doi: 10.1161/01.res.86.2.125
[7]  Beresewicz M, Majewska M, Makarewicz D, Vayro S, Zab?ocka B, et al. (2010) Changes in the expression of insulin-like growth factor 1 variants in the postnatal brain development and in neonatal hypoxia-ischaemia. Int J Dev Neurosci 28(1): 91–97. doi: 10.1016/j.ijdevneu.2009.09.002
[8]  Zemva J, Schubert M (2011) Central insulin and insulin-like growth factor-1 signaling-implications for diabetes associated dementia. Current Diabetes Reviews 7(5): 356–366. doi: 10.2174/157339911797415594
[9]  Roubenoff R, Parise H, Payette H A, Abad LW, D'Agostino R, et al. (2003) Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study. Am J Med 115(6): 429–435. doi: 10.1016/j.amjmed.2003.05.001
[10]  Juul A (2003) Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm IGF Res 13: 113–170. doi: 10.1016/s1096-6374(03)00038-8
[11]  Johnsen SP, Hundborg HH, Sorensen HT, Orskov H, Tjonneland A, et al. (2005) Insulin-like growth factor (IGF) I, -II, and IGF binding protein-3 and risk of ischemic stroke. J Clin Endocrinol Metab 90: 5937–5941. doi: 10.1210/jc.2004-2088
[12]  Denti L, Annoni V, Cattadori E, Salvagnini MA, Visioli S, et al. (2004) Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. Am J Med 117: 312–317. doi: 10.1016/j.amjmed.2004.02.049
[13]  Dong X, Chang G, Ji X, Tao DB, Wang YX (2014) The Relationship between Serum Insulin-Like Growth Factor I Levels and Ischemic Stroke Risk. PloS one 9(4): e94845. doi: 10.1371/journal.pone.0094845
[14]  Selvamani A, Sohrabji F (2010) The neurotoxic effects of estrogen on ischemic stroke in older female rats is associated with age-dependent loss of insulin-like growth factor-1. J Neurosci 30: 6852–6861. doi: 10.1523/jneurosci.0761-10.2010
[15]  Bondanelli M, Ambrosio MR, Onofri A, Bergonzoni A, Lavezzi S, et al. (2006) Predictive value of circulating insulin-like growth factor I levels in ischemic stroke outcome. J Clin Endocrinol Metab 91(10): 3928–3934. doi: 10.1210/jc.2006-1040
[16]  De Smedt A, Brouns R, Uyttenboogaart M, De Raedt S, Moens M, et al. (2011) Insulin-like growth factor I serum levels influence ischemic stroke outcome. Stroke 42(8): 2180–2185. doi: 10.1161/strokeaha.110.600783
[17]  Brott T, Adams HP Jr, Olinger CP, Marler JR, Barsanl W G, et al. (1989) Measurements of acute cerebral infarction: A clinical examination scale. Stroke 20: 864–870. doi: 10.1161/01.str.20.7.864
[18]  Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24: 35–41. doi: 10.1161/01.str.24.1.35
[19]  Bamford J, Sandercock P, Dennis M, Burn J, Warlow C (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337: 1521–1526. doi: 10.1016/0140-6736(91)93206-o
[20]  Sims JR, Gharai LR, Schaefer PW, Vangel M, Rosenthal ES (2009) ABC/2 for rapid clinical estimate of infarct, perfusion, and mismatch volumes. Neurology 72: 2104–2110. doi: 10.1212/wnl.0b013e3181aa5329
[21]  Bonita R BR (1988) Modification of Rankin Scale: recovery of motor function after stroke. Stroke 19: 1497–1500. doi: 10.1161/01.str.19.12.1497
[22]  ?berg D, Jood K, Blomstrand C, Jern C, Nilsson M, et al. (2011) Serum IGF-I levels correlate to improvement of functional outcome after ischemic stroke. J Clin Endocrinol Metab 96(7): E1055–E1064. doi: 10.1210/jc.2010-2802
[23]  ?berg ND, Olsson S, ?berg D, Jood K, Stanne TM, et al. (2013) Genetic variation at the IGF1 locus shows association with post-stroke outcome and to circulating IGF1. Eur J Endocrinol 169(6): 759–765. doi: 10.1530/eje-13-0486
[24]  Granada ML, Ulied A, Casanueva FF, Pico A, Lucas T, et al. (2008) Serum IGF-I measured by four different immunoassays in patients with adult GH deficiency or acromegaly and in a control population. Clin Endocrinol (Oxf) 68: 942–950. doi: 10.1111/j.1365-2265.2007.03120.x
[25]  Aimaretti G, Boschetti M, Corneli G, Gasco V, Valle D, et al. (2008) Normal age-dependent values of serum insulin growth factor-I: results from a healthy Italian population. J Endocrinol Invest 31: 445–449. doi: 10.1007/bf03346389
[26]  Kooijman R, Sarre S, Michotte Y, De Keyser J (2009) Insulin-Like Growth Factor I: A Potential Neuroprotective Compound for the Treatment of Acute Ischemic Stroke? Stroke 40(4): e83–e88. doi: 10.1161/strokeaha.108.528356
[27]  Schabitz WR, Hoffmann TT, Heiland S, Kollmar R, Bardutzky J, et al. (2001) Delayed neuroprotective effect of insulin-like growth factor-1 after experimental transient focal cerebral ischemia monitored with mri. Stroke 32: 1226–1233. doi: 10.1161/01.str.32.5.1226
[28]  Hong M, Lee VM (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272(31): 19547–19553. doi: 10.1074/jbc.272.31.19547
[29]  Pfeifle B, Ditschuneit H (1983) Receptors for insulin and insulin-like growth factor in cultured arterial smooth muscle cells depend on their growth state. J Endocrinol 96: 251–257. doi: 10.1677/joe.0.0960251
[30]  Hochberg Z, Hertz P, Maor G, Oiknine J, Aviram M (1992) Growth hormone and insulin-like growth factor I increase macrophage uptake and degradation of low-density lipoprotein. Endocrinology 131: 430–435. doi: 10.1210/endo.131.1.1612024
[31]  Bar RS, Boes M (1984) Distinct receptors for IGF-I, IGF-II, and insulin are present on bovine capillary endothelial cells and large vessel endothelial cells. Biochem Biophys Res Commun 124: 203–209. doi: 10.1016/0006-291x(84)90937-9
[32]  Sohrabji F, Williams M (2013) Stroke Neuroprotection: Oestrogen and Insulin-Like Growth Factor-1 Interactions and the Role of Microglia. J Neuroendocrinol 25: 1173–1181. doi: 10.1111/jne.12059


comments powered by Disqus