All Title Author
Keywords Abstract

PLOS ONE  2014 

Necdin Promotes Ubiquitin-Dependent Degradation of PIAS1 SUMO E3 Ligase

DOI: 10.1371/journal.pone.0099503

Full-Text   Cite this paper   Add to My Lib


Necdin, a pleiotropic protein that promotes differentiation and survival of mammalian neurons, is a member of MAGE (melanoma antigen) family proteins that share a highly conserved MAGE homology domain. Several MAGE proteins interact with ubiquitin E3 ligases and modulate their activities. However, it remains unknown whether MAGE family proteins interact with SUMO (small ubiquitin-like modifier) E3 ligases such as PIAS (protein inhibitor of activated STAT) family, Nsmce2/Mms21 and Cbx4/Pc2. In the present study, we examined whether necdin interacts with these SUMO E3 ligases. Co-immunoprecipitation analysis revealed that necdin, MAGED1, MAGEF1 and MAGEL2 bound to PIAS1 but not to Nsmce2 or Cbx4. These SUMO E3 ligases bound to MAGEA1 but failed to interact with necdin-like 2/MAGEG1. Necdin bound to PIAS1 central domains that are highly conserved among PIAS family proteins and suppressed PIAS1-dependent sumoylation of the substrates STAT1 and PML (promyelocytic leukemia protein). Remarkably, necdin promoted degradation of PIAS1 via the ubiquitin-proteasome pathway. In transfected HEK293A cells, amino- and carboxyl-terminally truncated mutants of PIAS1 bound to necdin but failed to undergo necdin-dependent ubiquitination. Both PIAS1 and necdin were associated with the nuclear matrix, where the PIAS1 terminal deletion mutants failed to localize, implying that the nuclear matrix is indispensable for necdin-dependent ubiquitination of PIAS1. Our data suggest that necdin suppresses PIAS1 both by inhibiting SUMO E3 ligase activity and by promoting ubiquitin-dependent degradation.


[1]  Maruyama K, Usami M, Aizawa T, Yoshikawa K (1991) A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem Biophys Res Commun 178: 291–296. doi: 10.1016/0006-291x(91)91812-q
[2]  Aizawa T, Maruyama K, Kondo H, Yoshikawa K (1992) Expression of necdin, an embryonal carcinoma-derived nuclear protein, in developing mouse brain. Brain Res Dev Brain Res 68: 265–274. doi: 10.1016/0165-3806(92)90069-9
[3]  Uetsuki T, Takagi K, Sugiura H, Yoshikawa K (1996) Structure and expression of the mouse necdin gene. Identification of a postmitotic neuron-restrictive core promoter. J Biol Chem 271: 918–924. doi: 10.1074/jbc.271.2.918
[4]  Kuwajima T, Taniura H, Nishimura I, Yoshikawa K (2004) Necdin interacts with the Msx2 homeodomain protein via MAGE-D1 to promote myogenic differentiation of C2C12 cells. J Biol Chem 279: 40484–40493. doi: 10.1074/jbc.m404143200
[5]  Huang Z, Fujiwara K, Minamide R, Hasegawa K, Yoshikawa K (2013) Necdin controls proliferation and apoptosis of embryonic neural stem cells in an oxygen tension-dependent manner. J Neurosci 33: 10362–10373. doi: 10.1523/jneurosci.5682-12.2013
[6]  Minamide R, Fujiwara K, Hasegawa K, Yoshikawa K (2014) Antagonistic interplay between necdin and Bmi1 controls proliferation of neural precursor cells in the embryonic mouse neocortex. PLoS One 9: e84460. doi: 10.1371/journal.pone.0084460
[7]  Taniura H, Taniguchi N, Hara M, Yoshikawa K (1998) Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. J Biol Chem 273: 720–728. doi: 10.1074/jbc.273.2.720
[8]  Taniura H, Matsumoto K, Yoshikawa K (1999) Physical and functional interactions of neuronal growth suppressor necdin with p53. J Biol Chem 274: 16242–16248. doi: 10.1074/jbc.274.23.16242
[9]  Kobayashi M, Taniura H, Yoshikawa K (2002) Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells. J Biol Chem 277: 42128–42135. doi: 10.1074/jbc.m205024200
[10]  Kurita M, Kuwajima T, Nishimura I, Yoshikawa K (2006) Necdin downregulates cdc2 expression to attenuate neuronal apoptosis. J Neurosci 26: 12003–12013. doi: 10.1523/jneurosci.3002-06.2006
[11]  Hasegawa K, Yoshikawa K (2008) Necdin regulates p53 acetylation via Sirtuin1 to modulate DNA damage response in cortical neurons. J Neurosci 28: 8772–8784. doi: 10.1523/jneurosci.3052-08.2008
[12]  Kuwako K, Hosokawa A, Nishimura I, Uetsuki T, Yamada M, et al. (2005) Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival. J Neurosci 25: 7090–7099. doi: 10.1523/jneurosci.2083-05.2005
[13]  Aebischer J, Sturny R, Andrieu D, Rieusset A, Schaller F, et al. (2011) Necdin protects embryonic motoneurons from programmed cell death. PLoS One 6: e23764. doi: 10.1371/journal.pone.0023764
[14]  Chomez P, De Backer O, Bertrand M, De Plaen E, Boon T, et al. (2001) An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res 61: 5544–5551.
[15]  Barker PA, Salehi A (2002) The MAGE proteins: Emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. J Neurosci Res 67: 705–712. doi: 10.1002/jnr.10160
[16]  Pold M, Zhou J, Chen GL, Hall JM, Vescio RA, et al. (1999) Identification of a new, unorthodox member of the MAGE gene family. Genomics 59: 161–167. doi: 10.1006/geno.1999.5870
[17]  Bischof JM, Ekker M, Wevrick R (2003) A MAGE/NDN-like gene in zebrafish. Dev Dyn 228: 475–479. doi: 10.1002/dvdy.10398
[18]  Lopez-Sanchez N, Gonzalez-Fernandez Z, Niinobe M, Yoshikawa K, Frade JM (2007) Single mage gene in the chicken genome encodes CMage, a protein with functional similarities to mammalian type II Mage proteins. Physiol Genomics 30: 156–171. doi: 10.1152/physiolgenomics.00249.2006
[19]  Pebernard S, McDonald WH, Pavlova Y, Yates JR 3rd, Boddy MN (2004) Nse1, Nse2, and a novel subunit of the Smc5-Smc6 complex, Nse3, play a crucial role in meiosis. Mol Biol Cell 15: 4866–4876. doi: 10.1091/mbc.e04-05-0436
[20]  Sergeant J, Taylor E, Palecek J, Fousteri M, Andrews EA, et al. (2005) Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) complex. Mol Cell Biol 25: 172–184. doi: 10.1128/mcb.25.1.172-184.2005
[21]  Kegel A, Sjogren C (2010) The Smc5/6 complex: more than repair? Cold Spring Harb Symp Quant Biol 75: 179–187. doi: 10.1101/sqb.2010.75.047
[22]  Katsura Y, Satta Y (2011) Evolutionary history of the cancer immunity antigen MAGE gene family. PLoS One 6: e20365. doi: 10.1371/journal.pone.0020365
[23]  Zhao Q, Caballero OL, Simpson AJ, Strausberg RL (2012) Differential evolution of MAGE genes based on expression pattern and selection pressure. PLoS One 7: e48240. doi: 10.1371/journal.pone.0048240
[24]  Nishimura I, Shimizu S, Sakoda JY, Yoshikawa K (2007) Expression of Drosophila MAGE gene encoding a necdin homologous protein in postembryonic neurogenesis. Gene Expr Patterns 7: 244–251. doi: 10.1016/j.modgep.2006.09.008
[25]  Nishimura I, Sakoda JY, Yoshikawa K (2008) Drosophila MAGE controls neural precursor proliferation in postembryonic neurogenesis. Neuroscience 154: 572–581. doi: 10.1016/j.neuroscience.2008.03.075
[26]  van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, et al. (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254: 1643–1647. doi: 10.1126/science.1840703
[27]  Lee S, Kozlov S, Hernandez L, Chamberlain SJ, Brannan CI, et al. (2000) Expression and imprinting of MAGEL2 suggest a role in prader-willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet 9: 1813–1819. doi: 10.1093/hmg/9.12.1813
[28]  Chibuk TK, Bischof JM, Wevrick R (2001) A necdin/MAGE-like gene in the chromosome 15 autism susceptibility region: expression, imprinting, and mapping of the human and mouse orthologues. BMC Genet 2: 22.
[29]  Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, et al. (1997) The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet 17: 357–361. doi: 10.1038/ng1197-357
[30]  MacDonald HR, Wevrick R (1997) The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum Mol Genet 6: 1873–1878. doi: 10.1093/hmg/6.11.1873
[31]  Nakada Y, Taniura H, Uetsuki T, Inazawa J, Yoshikawa K (1998) The human chromosomal gene for necdin, a neuronal growth suppressor, in the Prader-Willi syndrome deletion region. Gene 213: 65–72. doi: 10.1016/s0378-1119(98)00206-6
[32]  Kozlov SV, Bogenpohl JW, Howell MP, Wevrick R, Panda S, et al. (2007) The imprinted gene Magel2 regulates normal circadian output. Nat Genet 39: 1266–1272. doi: 10.1038/ng2114
[33]  Gerard M, Hernandez L, Wevrick R, Stewart CL (1999) Disruption of the mouse necdin gene results in early post-natal lethality. Nat Genet 23: 199–202. doi: 10.1038/13828
[34]  Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M, et al. (2000) Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum Mol Genet 9: 3101–3110. doi: 10.1093/hmg/9.20.3101
[35]  Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947–956. doi: 10.1038/nrm2293
[36]  Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18: 2046–2059. doi: 10.1101/gad.1214604
[37]  Denuc A, Marfany G (2010) SUMO and ubiquitin paths converge. Biochem Soc Trans 38: 34–39. doi: 10.1042/bst0380034
[38]  Doyle JM, Gao J, Wang J, Yang M, Potts PR (2010) MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Molecular Cell 39: 963–974. doi: 10.1016/j.molcel.2010.08.029
[39]  Yang B, O'Herrin SM, Wu J, Reagan-Shaw S, Ma Y, et al. (2007) MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res 67: 9954–9962. doi: 10.1158/0008-5472.can-07-1478
[40]  Perry JJ, Tainer JA, Boddy MN (2008) A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem Sci 33: 201–208. doi: 10.1016/j.tibs.2008.02.001
[41]  Liu B, Liao J, Rao X, Kushner SA, Chung CD, et al. (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A 95: 10626–10631. doi: 10.1073/pnas.95.18.10626
[42]  Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113: 127–137. doi: 10.1016/s0092-8674(03)00159-4
[43]  Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A 102: 4777–4782. doi: 10.1073/pnas.0500537102
[44]  Andrews EA, Palecek J, Sergeant J, Taylor E, Lehmann AR, et al. (2005) Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol Cell Biol 25: 185–196. doi: 10.1128/mcb.25.1.185-196.2005
[45]  Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108: 109–120. doi: 10.1016/s0092-8674(01)00633-x
[46]  Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5: 593–605. doi: 10.1038/nri1667
[47]  Rytinki MM, Kaikkonen S, Pehkonen P, Jaaskelainen T, Palvimo JJ (2009) PIAS proteins: pleiotropic interactors associated with SUMO. Cell Mol Life Sci 66: 3029–3041. doi: 10.1007/s00018-009-0061-z
[48]  Taniura H, Kobayashi M, Yoshikawa K (2005) Functional domains of necdin for protein-protein interaction, nuclear matrix targeting, and cell growth suppression. J Cell Biochem 94: 804–815. doi: 10.1002/jcb.20345
[49]  Hudson JJ, Bednarova K, Kozakova L, Liao C, Guerineau M, et al. (2011) Interactions between the Nse3 and Nse4 components of the SMC5-6 complex identify evolutionarily conserved interactions between MAGE and EID families. PLoS One 6: e17270. doi: 10.1371/journal.pone.0017270
[50]  Liang M, Melchior F, Feng XH, Lin X (2004) Regulation of Smad4 sumoylation and transforming growth factor-beta signaling by protein inhibitor of activated STAT1. J Biol Chem 279: 22857–22865. doi: 10.1074/jbc.m401554200
[51]  Rabellino A, Carter B, Konstantinidou G, Wu SY, Rimessi A, et al. (2012) The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA. Cancer Res 72: 2275–2284. doi: 10.1158/0008-5472.can-11-3159
[52]  Sudharsan R, Azuma Y (2012) The SUMO ligase PIAS1 regulates UV-induced apoptosis by recruiting Daxx to SUMOylated foci. J Cell Sci 125: 5819–5829. doi: 10.1242/jcs.110825
[53]  Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, et al. (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15: 3088–3103. doi: 10.1101/gad.944801
[54]  Taniura H, Yoshikawa K (2002) Necdin interacts with the ribonucleoprotein hnRNP U in the nuclear matrix. J Cell Biochem 84: 545–555. doi: 10.1002/jcb.10047
[55]  Taylor EM, Copsey AC, Hudson JJ, Vidot S, Lehmann AR (2008) Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex. Mol Cell Biol 28: 1197–1206. doi: 10.1128/mcb.00767-07
[56]  Kuwako K, Taniura H, Yoshikawa K (2004) Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor. J Biol Chem 279: 1703–1712. doi: 10.1074/jbc.m308454200
[57]  Depaux A, Regnier-Ricard F, Germani A, Varin-Blank N (2007) A crosstalk between hSiah2 and Pias E3-ligases modulates Pias-dependent activation. Oncogene 26: 6665–6676. doi: 10.1038/sj.onc.1210486
[58]  Francois S, D'Orlando C, Fatone T, Touvier T, Pessina P, et al. (2012) Necdin enhances myoblasts survival by facilitating the degradation of the mediator of apoptosis CCAR1/CARP1. PLoS One 7: e43335. doi: 10.1371/journal.pone.0043335
[59]  Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, et al. (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10: 547–555. doi: 10.1038/ncb1717
[60]  Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, et al. (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10: 538–546. doi: 10.1038/ncb1716
[61]  Regad T, Bellodi C, Nicotera P, Salomoni P (2009) The tumor suppressor Pml regulates cell fate in the developing neocortex. Nat Neurosci 12: 132–140. doi: 10.1038/nn.2251
[62]  Duval D, Duval G, Kedinger C, Poch O, Boeuf H (2003) The 'PINIT' motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L. FEBS Lett 554: 111–118. doi: 10.1016/s0014-5793(03)01116-5
[63]  Hochstrasser M (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107: 5–8. doi: 10.1016/s0092-8674(01)00519-0
[64]  Takazaki R, Nishimura I, Yoshikawa K (2002) Necdin is required for terminal differentiation and survival of primary dorsal root ganglion neurons. Exp Cell Res 277: 220–232. doi: 10.1006/excr.2002.5558
[65]  Liu B, Shuai K (2001) Induction of apoptosis by protein inhibitor of activated Stat1 through c-Jun NH2-terminal kinase activation. J Biol Chem 276: 36624–36631. doi: 10.1074/jbc.m101085200
[66]  Yang N, Zhao B, Rasul A, Qin H, Li J, et al. (2013) PIAS1-modulated Smad2/4 complex activation is involved in zinc-induced cancer cell apoptosis. Cell Death Dis 4: e811. doi: 10.1038/cddis.2013.333
[67]  Hasegawa K, Kawahara T, Fujiwara K, Shimpuku M, Sasaki T, et al. (2012) Necdin controls FoxO1 acetylation in hypothalamic arcuate neurons to modulate the thyroid axis. J Neurosci 32: 5562–5572. doi: 10.1523/jneurosci.0142-12.2012
[68]  Niinobe M, Koyama K, Yoshikawa K (2000) Cellular and subcellular localization of necdin in fetal and adult mouse brain. Dev Neurosci 22: 310–319. doi: 10.1159/000017455
[69]  He DC, Nickerson JA, Penman S (1990) Core filaments of the nuclear matrix. J Cell Biol 110: 569–580. doi: 10.1083/jcb.110.3.569
[70]  Fujiwara K, Hasegawa K, Ohkumo T, Miyoshi H, Tseng YH, et al. (2012) Necdin controls proliferation of white adipocyte progenitor cells. PLoS One 7: e30948. doi: 10.1371/journal.pone.0030948
[71]  Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72: 8150–8157.


comments powered by Disqus