[1] | Cazals Y, Pelizzone M, Saudan O, Boex C (1994) Low-pass filtering in amplitude modulation detection associated with vowel and consonant identification in subjects with cochlear implants. J Acoust Soc Am 96: 2048–2054. doi: 10.1121/1.410146
|
[2] | Fu QJ (2002) Temporal processing and speech recognition in cochlear implant users Neuroreport. 13: 1635–1640. doi: 10.1097/00001756-200209160-00013
|
[3] | Colletti V, Shannon RV (2005) Open set speech perception with auditory brainstem implant. Laryngoscope 115: 1974–1978. doi: 10.1097/01.mlg.0000178327.42926.ec
|
[4] | Shannon RV (1992) Temporal modulation transfer functions in patients with cochlear implants. J Acoust Soc Am 91: 2156–2164. doi: 10.1121/1.403807
|
[5] | Busby PA, Tong Y, Clark GM (1993) The perception of temporal modulations by cochlear implant patients. J Acoust Soc Am 94: 124–131. doi: 10.1121/1.408212
|
[6] | Donaldson GS, Viemeister NF (2000) Intensity discrimination and detection of amplitude modulation in electric hearing. J Acoust Soc Am 108: 760–763. doi: 10.1121/1.429609
|
[7] | Chatterjee M, Robert ME (2001) Noise enhances modulation sensitivity in cochlear implant listeners: stochastic resonance in a prosthetic sensory system? J Assoc Res Otolaryngol 2: 159–171. doi: 10.1007/s101620010079
|
[8] | Galvin JJ 3rd, Fu QJ (2005) Effects of stimulation rate mode and level on modulation detection by cochlear implant users. J Assoc Res Otolaryng 6: 269–279. doi: 10.1007/s10162-005-0007-6
|
[9] | Galvin JJ 3rd, Fu QJ (2009) Influence of stimulation rate and loudness growth on modulation detection and intensity discrimination in cochlear implant users. Hear Res 250: 46–54. doi: 10.1016/j.heares.2009.01.009
|
[10] | Pfingst BE, Xu L, Thompson CS (2007) Effects of carrier pulse rate and stimulation site on modulation detection by subjects with cochlear implants. J Acoust Soc Am 121: 2236–2246. doi: 10.1121/1.2537501
|
[11] | Arora K, Vandali A, Dowell R, Dawson P (2011) Effects of stimulation rate on modulation detection and speech recognition by cochlear implant users. Int J Audiol 50: 123–132. doi: 10.3109/14992027.2010.527860
|
[12] | Chatterjee M, Oberzut C (2011) Detection and rate discrimination of amplitude modulation in electrical hearing. J Acoust Soc Am 130: 1567–1580. doi: 10.1121/1.3621445
|
[13] | Green T, Faulkner A, Rosen S (2012) Variations in carrier pulse rate and the perception of amplitude modulation in cochlear implant users Ear Hear. 33: 221–230. doi: 10.1097/aud.0b013e318230fff8
|
[14] | Fraser M, McKay CM (2012) Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues. Hear Res 283: 59–69. doi: 10.1016/j.heares.2011.11.009
|
[15] | Chatterjee M, Oba SI (2005) Noise improves modulation detection by cochlear implant listeners at moderate carrier levels. J Acoust Soc Am 118: 993–1002. doi: 10.1121/1.1929258
|
[16] | Garadat SN, Zwolan TA, Pfingst BE (2012) Across-site patterns of modulation detection: Relation to speech recognition. J. Acoust. Soc. Am 131: 4030–4041. doi: 10.1121/1.3701879
|
[17] | Geurts L, Wouters J (2001) Coding of the fundamental frequency in continuous interleaved sampling processors for cochlear implants. J Acoust Soc Am 109: 713–726. doi: 10.1121/1.1340650
|
[18] | Chatterjee M (2003) Modulation masking in cochlear implant listeners: envelope versus tonotopic components. J Acoust Soc Am 113: 2042–2053. doi: 10.1121/1.1555613
|
[19] | Dau T, Kollmeier B, Kohlrausch A (1997a) Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J Acoust Soc Am 102: 2892–2905. doi: 10.1121/1.420344
|
[20] | Dau T, Kollmeier B, Kohlrausch A (1997b) Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am 102: 2906–2919. doi: 10.1121/1.420345
|
[21] | Kreft HA, Nelson DA, Oxenham AJ (2013) Modulation frequency discrimination with modulated and unmodulated interference in normal hearing and in cochlear-implant users. J Assoc Res Otolaryngol 14: 591–601. doi: 10.1007/s10162-013-0391-2
|
[22] | Galvin JJ 3rd, Fu QJ, Oba SI (2013) A method to dynamically control unwanted loudness cues when measuring amplitude modulation detection in cochlear implant users. J Neurosci Methods DOI information: 10.1016/j.jneumeth.2013.10.016.
|
[23] | Wygonski J, Robert ME (2002) HEI Nucleus Research Interface HEINRI Specification Internal materials.
|
[24] | Jesteadt W (1980) An adaptive procedure for subjective judgments. Percept Psychophys 28: 85–88. doi: 10.3758/bf03204321
|
[25] | Zeng FG, Turner CW (1991) Binaural loudness matches in unilaterally impaired listeners Quarterly. J Exp Psych 43: 565–583. doi: 10.1080/14640749108400987
|
[26] | McKay CM, Henshall KR (2010) Amplitude modulation and loudness in cochlear implantees. J Assoc Res Otolaryng 11: 101–111. doi: 10.1007/s10162-009-0188-5
|
[27] | Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49 Supp 2467. doi: 10.1121/1.1912375
|
[28] | McKay CM, Remine MD, McDermott HJ (2001) Loudness summation for pulsatile electrical stimulation of the cochlea: effects of rate, electrode separation, level, and mode of stimulation. J Acoust Soc Am 110: 1514–1524. doi: 10.1121/1.1394222
|
[29] | McKay CM, Henshall KR, Farrell RJ, McDermott HJ (2003) A practical method of predicting the loudness of complex electrical stimuli. J Acoust Soc Am 113: 2054–2063. doi: 10.1121/1.1558378
|
[30] | Zhou N, Pfingst BE (2012) Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants. J Acoust Soc Am 132: 994–1008. doi: 10.1121/1.4730907
|