Objective It has been suggested that autoantibodies in systemic sclerosis (SSc) may induce the differentiation of cultured fibroblasts into myofibroblasts through platelet-derived growth factor receptor (PDGFR) activation. The present study aims to characterize the effects of SSc IgG on vascular smooth muscle cells (VSMCs) and to determine if stimulatory autoantibodies directed to the PDGFR can be detected, and whether they induce a profibrotic response in primary cultured VSMCs. Methods Cultured VSMCs were exposed to IgG fractions purified from SSc-patient or control sera. VSMC responses were then analyzed for ERK1/2 and Akt phosphorylation, PDGFR immunoprecipitation, cellular proliferation, protein synthesis, and pro-fibrotic changes in mRNA expression. Results Stimulatory activity in IgG fractions was more prevalent and intense in the SSc samples. SSc IgG immunoprecipitated the PDGFR with greater avidity than control IgG. Interestingly, activation of downstream signaling events (e.g. Akt, ERK1/2) was independent of PDGFR activity, but required functional EGFR. We also detected increased protein synthesis in response to SSc IgG (p<0.001) and pro-fibrotic changes in gene expression (Tgfb1 +200%; Tgfb2 ?23%; p<0.001)) in VSMCs treated with SSc IgG. Conclusion When compared to control IgG, SSc IgG have a higher stimulation index in VSMCs. Although SSc IgG interact with the PDGFR, the observed remodeling signaling events occur through the EGFR in VSMC. Our data thus favour a model of transactivation of the EGFR by SSc-derived PDGFR autoantibodies and suggest the use of EGFR inhibitors in future target identification studies in the field of SSc.
References
[1]
Baroni SS, Santillo M, Bevilacqua F, Luchetti M, Spadoni T, et al. (2006) Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 354: 2667–2676. doi: 10.1056/nejmoa052955
[2]
Svegliati S, Olivieri A, Campelli N, Luchetti M, Poloni A, et al. (2007) Stimulatory autoantibodies to PDGF receptor in patients with extensive chronic graft-versus-host disease. Blood 110: 237–241. doi: 10.1182/blood-2007-01-071043
[3]
Daoussis D, Liossis SN, Yiannopoulos G, Andonopoulos AP (2011) B-cell depletion therapy in systemic sclerosis: experimental rationale and update on clinical evidence. Int J Rheumatol 2011: 214013. doi: 10.1155/2011/214013
[4]
Classen JF, Henrohn D, Rorsman F, Lennartsson J, Lauwerys BR, et al. (2009) Lack of evidence of stimulatory autoantibodies to platelet-derived growth factor receptor in patients with systemic sclerosis. Arthritis Rheum 60: 1137–1144. doi: 10.1002/art.24381
[5]
Loizos N, Lariccia L, Weiner J, Griffith H, Boin F, et al. (2009) Lack of detection of agonist activity by antibodies to platelet-derived growth factor receptor alpha in a subset of normal and systemic sclerosis patient sera. Arthritis Rheum 60: 1145–1151. doi: 10.1002/art.24365
[6]
Balada E, Simeon-Aznar CP, Ordi-Ros J, Rosa-Leyva M, Selva-O'Callaghan A, et al. (2008) Anti-PDGFR-alpha antibodies measured by non-bioactivity assays are not specific for systemic sclerosis. Ann Rheum Dis 67: 1027–1029. doi: 10.1136/ard.2007.085480
[7]
Kurasawa K, Arai S, Owada T, Maezawa R, Kumano K, et al. (2010) Autoantibodies against platelet-derived growth factor receptor alpha in patients with systemic lupus erythematosus. Mod Rheumatol 20: 458–465. doi: 10.3109/s10165-010-0310-x
[8]
Khimdas S, Harding S, Bonner A, Zummer B, Baron M, et al. (2011) Associations with digital ulcers in a large cohort of systemic sclerosis: results from the Canadian Scleroderma Research Group registry. Arthritis Care Res (Hoboken) 63: 142–149. doi: 10.1002/acr.20336
[9]
Lambova S, Muller-Ladner U (2010) Pulmonary arterial hypertension in systemic sclerosis. Autoimmun Rev 9: 761–770. doi: 10.1016/j.autrev.2010.06.006
Servant MJ, Coulombe P, Turgeon B, Meloche S (2000) Differential regulation of p27(Kip1) expression by mitogenic and hypertrophic factors: Involvement of transcriptional and posttranscriptional mechanisms. J Cell Biol 148: 543–556. doi: 10.1083/jcb.148.3.543
[12]
Overbeek MJ, Boonstra A, Voskuyl AE, Vonk MC, Vonk-Noordegraaf A, et al. (2011) Platelet-derived growth factor receptor-beta and epidermal growth factor receptor in pulmonary vasculature of systemic sclerosis-associated pulmonary arterial hypertension versus idiopathic pulmonary arterial hypertension and pulmonary veno-occlusive disease: a case-control study. Arthritis Res Ther 13: R61. doi: 10.1186/ar3315
[13]
Saito Y, Haendeler J, Hojo Y, Yamamoto K, Berk BC (2001) Receptor heterodimerization: essential mechanism for platelet-derived growth factor-induced epidermal growth factor receptor transactivation. Mol Cell Biol 21: 6387–6394. doi: 10.1128/mcb.21.19.6387-6394.2001
[14]
Graves LM, Han J, Earp HS 3rd (2002) Transactivation of the EGF receptor: is the PDGF receptor an unexpected accomplice? Mol Interv 2: 208–212. doi: 10.1124/mi.2.4.208
[15]
Douillette A, Bibeau-Poirier A, Gravel SP, Clement JF, Chenard V, et al. (2006) The proinflammatory actions of angiotensin II are dependent on p65 phosphorylation by the IkappaB kinase complex. J Biol Chem 281: 13275–13284. doi: 10.1074/jbc.m512815200
[16]
Doyon P, Servant MJ (2010) Tumor necrosis factor receptor-associated factor-6 and ribosomal S6 kinase intracellular pathways link the angiotensin II AT1 receptor to the phosphorylation and activation of the IkappaB kinase complex in vascular smooth muscle cells. J Biol Chem 285: 30708–30718. doi: 10.1074/jbc.m110.126433
[17]
Duprez DA (2006) Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review. J Hypertens 24: 983–991. doi: 10.1097/01.hjh.0000226182.60321.69
[18]
Saito Y, Berk BC (2001) Transactivation: a novel signaling pathway from angiotensin II to tyrosine kinase receptors. J Mol Cell Cardiol 33: 3–7. doi: 10.1006/jmcc.2000.1272
[19]
Riemekasten G, Philippe A, Nather M, Slowinski T, Muller DN, et al. (2011) Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann Rheum Dis 70: 530–536. doi: 10.1136/ard.2010.135772
[20]
Subcommittee (1980) for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Preliminary criteria for the classification of systemic sclerosis (scleroderma) Arthritis Rheum 23: 581–590. doi: 10.1002/art.1780230510
[21]
Furst DE, Clements PJ, Steen VD, Medsger TA Jr, Masi AT, et al. (1998) The modified Rodnan skin score is an accurate reflection of skin biopsy thickness in systemic sclerosis. J Rheumatol 25: 84–88.
[22]
Medsger TA Jr, Bombardieri S, Czirjak L, Scorza R, Della Rossa A, et al. (2003) Assessment of disease severity and prognosis. Clin Exp Rheumatol 21: S42–46.
[23]
Mukerjee D, St George D, Knight C, Davar J, Wells AU, et al. (2004) Echocardiography and pulmonary function as screening tests for pulmonary arterial hypertension in systemic sclerosis. Rheumatology (Oxford) 43: 461–466. doi: 10.1093/rheumatology/keh067
[24]
Hsu VM, Moreyra AE, Wilson AC, Shinnar M, Shindler DM, et al. (2008) Assessment of pulmonary arterial hypertension in patients with systemic sclerosis: comparison of noninvasive tests with results of right-heart catheterization. J Rheumatol 35: 458–465.
[25]
Santiago M, Baron M, Hudson M, Burlingame RW, Fritzler MJ (2007) Antibodies to RNA polymerase III in systemic sclerosis detected by ELISA. J Rheumatol 34: 1528–1534.
[26]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[27]
Kuwana M, Okano Y, Pandey JP, Silver RM, Fertig N, et al. (2005) Enzyme-linked immunosorbent assay for detection of anti-RNA polymerase III antibody: analytical accuracy and clinical associations in systemic sclerosis. Arthritis Rheum 52: 2425–2432. doi: 10.1002/art.21232
[28]
Zhan Y, Kim S, Izumi Y, Izumiya Y, Nakao T, et al. (2003) Role of JNK, p38, and ERK in platelet-derived growth factor-induced vascular proliferation, migration, and gene expression. Arterioscler Thromb Vasc Biol 23: 795–801. doi: 10.1161/01.atv.0000066132.32063.f2
[29]
Dimmeler S, Zeiher AM (2000) Akt takes center stage in angiogenesis signaling. Circ Res 86: 4–5. doi: 10.1161/01.res.86.1.4
[30]
Kovalenko M, Gazit A, Bohmer A, Rorsman C, Ronnstrand L, et al. (1994) Selective platelet-derived growth factor receptor kinase blockers reverse sis-transformation. Cancer Res 54: 6106–6114.
[31]
Tse KF, Novelli E, Civin CI, Bohmer FD, Small D (2001) Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor. Leukemia 15: 1001–1010. doi: 10.1038/sj.leu.2402199
[32]
Pardanani A, Tefferi A (2004) Imatinib targets other than bcr/abl and their clinical relevance in myeloid disorders. Blood 104: 1931–1939. doi: 10.1182/blood-2004-01-0246
[33]
Levitzki A, Mishani E (2006) Tyrphostins and other tyrosine kinase inhibitors. Annu Rev Biochem 75: 93–109. doi: 10.1146/annurev.biochem.75.103004.142657
[34]
Bokemeyer D, Schmitz U, Kramer HJ (2000) Angiotensin II-induced growth of vascular smooth muscle cells requires an Src-dependent activation of the epidermal growth factor receptor. Kidney Int 58: 549–558. doi: 10.1046/j.1523-1755.2000.t01-1-00201.x
[35]
Verrecchia F, Mauviel A (2007) Transforming growth factor-beta and fibrosis. World J Gastroenterol 13: 3056–3062.
[36]
Demoulin JB, Essaghir A (2014) PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev.
[37]
Lurje G, Lenz HJ (2009) EGFR signaling and drug discovery. Oncology 77: 400–410. doi: 10.1159/000279388
[38]
Shiojima I, Walsh K (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90: 1243–1250. doi: 10.1161/01.res.0000022200.71892.9f
[39]
Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12: 502–513. doi: 10.1101/gad.12.4.502
[40]
Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, et al. (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274: 22699–22704. doi: 10.1074/jbc.274.32.22699
[41]
Prelog M, Scheidegger P, Peter S, Gershwin ME, Wick G, et al. (2005) Diminished transforming growth factor beta2 production leads to increased expression of a profibrotic procollagen alpha2 type I messenger RNA variant in embryonic fibroblasts of UCD-200 chickens, a model for systemic sclerosis. Arthritis Rheum 52: 1804–1811. doi: 10.1002/art.21109
[42]
Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, et al. (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273: 8890–8896. doi: 10.1074/jbc.273.15.8890
[43]
Gschwind A, Zwick E, Prenzel N, Leserer M, Ullrich A (2001) Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 20: 1594–1600. doi: 10.1038/sj.onc.1204192
[44]
Black PC, Brown GA, Dinney CP, Kassouf W, Inamoto T, et al. (2011) Receptor heterodimerization: a new mechanism for platelet-derived growth factor induced resistance to anti-epidermal growth factor receptor therapy for bladder cancer. J Urol 185: 693–700. doi: 10.1016/j.juro.2010.09.082
[45]
Walker F, Burgess AW (1991) Reconstitution of the high affinity epidermal growth factor receptor on cell-free membranes after transmodulation by platelet-derived growth factor. J Biol Chem 266: 2746–2752.
[46]
Decker SJ, Harris P (1989) Effects of platelet-derived growth factor on phosphorylation of the epidermal growth factor receptor in human skin fibroblasts. J Biol Chem 264: 9204–9209.
[47]
Countaway JL, Girones N, Davis RJ (1989) Reconstitution of epidermal growth factor receptor transmodulation by platelet-derived growth factor in Chinese hamster ovary cells. J Biol Chem 264: 13642–13647.
[48]
Skhirtladze C, Distler O, Dees C, Akhmetshina A, Busch N, et al. (2008) Src kinases in systemic sclerosis: central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum 58: 1475–1484. doi: 10.1002/art.23436
[49]
Planque S, Zhou YX, Nishiyama Y, Sinha M, O'Connor-Mccourt M, et al. (2003) Autoantibodies to the epidermal growth factor receptor in systemic sclerosis, lupus, and autoimmune mice. FASEB J 17: 136–143. doi: 10.1096/fj.01-0847com
[50]
Bussone G, Tamby MC, Calzas C, Kherbeck N, Sahbatou Y, et al. (2012) IgG from patients with pulmonary arterial hypertension and/or systemic sclerosis binds to vascular smooth muscle cells and induces cell contraction. Ann Rheum Dis 71: 596–605. doi: 10.1136/annrheumdis-2011-200195
[51]
Tinhofer I, Maly K, Dietl P, Hochholdinger F, Mayr S, et al. (1996) Differential Ca2+ signaling induced by activation of the epidermal growth factor and nerve growth factor receptors. J Biol Chem 271: 30505–30509. doi: 10.1074/jbc.271.48.30505
[52]
Matchkov VV, Kudryavtseva O, Aalkjaer C (2012) Intracellular Ca(2)(+) signalling and phenotype of vascular smooth muscle cells. Basic Clin Pharmacol Toxicol 110: 42–48. doi: 10.1111/j.1742-7843.2011.00818.x
[53]
Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331: 1286–1292. doi: 10.1056/nejm199411103311907
[54]
Mouthon L (2012) SSc in 2011: From mechanisms to medicines. Nat Rev Rheumatol 8: 72–74. doi: 10.1038/nrrheum.2011.203
[55]
Pope J, McBain D, Petrlich L, Watson S, Vanderhoek L, et al. (2011) Imatinib in active diffuse cutaneous systemic sclerosis: Results of a six-month, randomized, double-blind, placebo-controlled, proof-of-concept pilot study at a single center. Arthritis Rheum 63: 3547–3551. doi: 10.1002/art.30549
[56]
Prey S, Ezzedine K, Doussau A, Grandoulier AS, Barcat D, et al. (2012) Imatinib mesylate in scleroderma-associated diffuse skin fibrosis: a phase II multicentre randomized double-blinded controlled trial. Br J Dermatol 167: 1138–1144. doi: 10.1111/j.1365-2133.2012.11186.x
[57]
Moinzadeh P, Hunzelmann N, Krieg T (2013) Pharmacology and rationale for imatinib in the treatment of scleroderam. Journal of Experimental Pharmacology 2013: 15–22. doi: 10.2147/jep.s26894