Objective To investigate the effect of molecular hydrogen (H2) in a rat model subjected to optic nerve crush (ONC). Methods We tested the hypothesis that after optic nerve crush (ONC), retinal ganglion cell (RGC) could be protected by H2. Rats in different groups received saline or hydrogen-rich saline every day for 14 days after ONC. Retinas from animals in each group underwent measurements of hematoxylin and eosin (H&E) staining, cholera toxin beta (CTB) tracing, gamma synuclein staining, and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining 2 weeks post operation. Flash visual evoked potentials (FVEP) and pupillary light reflex (PLR) were then tested to evaluate the function of optic nerve. The malondialdehyde (MDA) level in retina was evaluated. Results H&E, gamma synuclein staining and CTB tracing showed that the survival rate of RGCs in hydrogen saline-treated group was significantly higher than that in saline-treated group. Apoptosis of RGCs assessed by TUNEL staining were less observed in hydrogen saline-treated group. The MDA level in retina of H2 group was much lower than that in placebo group. Furthermore, animals treated with hydrogen saline showed better function of optic nerve in assessments of FVEP and PLR. Conclusion These results demonstrated that H2 protects RGCs and helps preserve the visual function after ONC and had a neuroprotective effect in a rat model subjected to ONC.
Bien A, Seidenbecher CI, Bockers TM, Sabel BA, Kreutz MR (1999) Apoptotic versus necrotic characteristics of retinal ganglion cell death after partial optic nerve injury. J Neurotrauma 16: 153–163. doi: 10.1089/neu.1999.16.153
[3]
Kreutz MR, Seidenbecher CI, Sabel BA (1999) Molecular plasticity of retinal ganglion cells after partial optic nerve injury. Restor Neurol Neurosci 14: 127–134.
[4]
Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689–695. doi: 10.1126/science.7901908
[5]
Clutton S (1997) The importance of oxidative stress in apoptosis. Br Med Bull 53: 662–668. doi: 10.1093/oxfordjournals.bmb.a011637
[6]
Levkovitch-Verbin H, Harris-Cerruti C, Groner Y, Wheeler LA, Schwartz M, et al. (2000) RGC death in mice after optic nerve crush injury: oxidative stress and neuroprotection. Invest Ophthalmol Vis Sci 41: 4169–4174.
[7]
Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, et al. (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13: 688–694. doi: 10.1038/nm1577
[8]
Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, et al. (2007) Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun 361: 670–674. doi: 10.1016/j.bbrc.2007.07.088
[9]
Zheng X, Mao Y, Cai J, Li Y, Liu W, et al. (2009) Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radic Res 43: 478–484. doi: 10.1080/10715760902870603
Wang F, Yu G, Liu SY, Li JB, Wang JF, et al. (2011) Hydrogen-rich saline protects against renal ischemia/reperfusion injury in rats. J Surg Res 167: e339–344. doi: 10.1016/j.jss.2010.11.005
[12]
Qian L, Cao F, Cui J, Huang Y, Zhou X, et al. (2010) Radioprotective effect of hydrogen in cultured cells and mice. Free Radic Res 44: 275–282. doi: 10.3109/10715760903468758
[13]
Terasaki Y, Ohsawa I, Terasaki M, Takahashi M, Kunugi S, et al. (2011) Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress. Am J Physiol Lung Cell Mol Physiol 301: L415–426. doi: 10.1152/ajplung.00008.2011
[14]
Kajiyama S, Hasegawa G, Asano M, Hosoda H, Fukui M, et al. (2008) Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res 28: 137–143. doi: 10.1016/j.nutres.2008.01.008
[15]
Li Y, Hamasaki T, Nakamichi N, Kashiwagi T, Komatsu T, et al. (2011) Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 63: 119–131. doi: 10.1007/s10616-010-9317-6
[16]
Kajiya M, Silva MJ, Sato K, Ouhara K, Kawai T (2009) Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate. Biochem Biophys Res Commun 386: 11–15. doi: 10.1016/j.bbrc.2009.05.117
[17]
Kajiya M, Sato K, Silva MJ, Ouhara K, Do PM, et al. (2009) Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem Biophys Res Commun 386: 316–321. doi: 10.1016/j.bbrc.2009.06.024
[18]
Chen H, Sun YP, Li Y, Liu WW, Xiang HG, et al. (2010) Hydrogen-rich saline ameliorates the severity of l-arginine-induced acute pancreatitis in rats. Biochem Biophys Res Commun 393: 308–313. doi: 10.1016/j.bbrc.2010.02.005
[19]
Zhao L, Zhou C, Zhang J, Gao F, Li B, et al. (2011) Hydrogen protects mice from radiation induced thymic lymphoma in BALB/c mice. Int J Biol Sci 7: 297–300. doi: 10.7150/ijbs.7.297
[20]
Huang Y, Xie K, Li J, Xu N, Gong G, et al. (2011) Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits. Brain Res 1378: 125–136. doi: 10.1016/j.brainres.2010.12.071
[21]
Cai J, Kang Z, Liu WW, Luo X, Qiang S, et al. (2008) Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci Lett 441: 167–172. doi: 10.1016/j.neulet.2008.05.077
[22]
Cai J, Kang Z, Liu K, Liu W, Li R, et al. (2009) Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res 1256: 129–137. doi: 10.1016/j.brainres.2008.11.048
[23]
Fu Y, Ito M, Fujita Y, Ito M, Ichihara M, et al. (2009) Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease. Neurosci Lett 453: 81–85. doi: 10.1016/j.neulet.2009.02.016
[24]
Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, et al. (2009) Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri?dinemouse model of Parkinson's disease. PLoS One 4: e7247. doi: 10.1371/journal.pone.0007247
[25]
Li J, Wang C, Zhang JH, Cai JM, Cao YP, et al. (2010) Hydrogen-rich saline improves memory function in a rat model of amyloid-beta-induced Alzheimer's disease by reduction of oxidative stress. Brain Res 1328: 152–161. doi: 10.1016/j.brainres.2010.02.046
[26]
Wang C, Li J, Liu Q, Yang R, Zhang JH, et al. (2011) Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-kappaB activation in a rat model of amyloid-beta-induced Alzheimer's disease. Neurosci Lett 491: 127–132. doi: 10.1016/j.neulet.2011.01.022
Lin Y, Kashio A, Sakamoto T, Suzukawa K, Kakigi A, et al. (2011) Hydrogen in drinking water attenuates noise-induced hearing loss in guinea pigs. Neurosci Lett 487: 12–16. doi: 10.1016/j.neulet.2010.09.064
[29]
Ji X, Liu W, Xie K, Liu W, Qu Y, et al. (2010) Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress. Brain Res 1354: 196–205. doi: 10.1016/j.brainres.2010.07.038
[30]
Oharazawa H, Igarashi T, Yokota T, Fujii H, Suzuki H, et al.. (2009) Rapid diffusion of hydrogen protects the retina: administration to the eye of hydrogen-containing saline in retinal ischemia-reperfusion injury. Invest Ophth Vis Sci iovs: 09–4089.
[31]
Wei L, Ge L, Qin S, Shi Y, Du C, et al. (2012) Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig. Exp Eye Res 94: 117–127. doi: 10.1016/j.exer.2011.11.016
[32]
Wang R, Xu J, Xie J, Kang Z, Sun X, et al. (2010) Hyperbaric oxygen preconditioning promotes survival of retinal ganglion cells in a rat model of optic nerve crush. J Neurotrauma 27: 763–770. doi: 10.1089/neu.2009.1005
[33]
Kilic U, Kilic E, Soliz J, Bassetti CI, Gassmann M, et al. (2005) Erythropoietin protects from axotomy-induced degeneration of retinal ganglion cells by activating ERK-1/-2. FASEB J 19: 249–251. doi: 10.1096/fj.04-2493fje
[34]
Surgucheva I, Weisman AD, Goldberg JL, Shnyra A, Surguchov A (2008) Gamma-synuclein as a marker of retinal ganglion cells. Mol Vis 14: 1540–1548.
[35]
Chan KM, Young MJ, Lund RD (1995) Interactive events subserving the pupillary light reflex in pigmented and albino rats. Eur J Neurosci 7: 2053–2063. doi: 10.1111/j.1460-9568.1995.tb00628.x
[36]
Grozdanic S, Betts DM, Allbaugh RA, Sakaguchi DS, Kwon YH, et al. (2003) Characterization of the pupil light reflex, electroretinogram and tonometric parameters in healthy mouse eyes. Curr Eye Res 26: 371–378. doi: 10.1076/ceyr.26.5.371.15439
[37]
Chen J, Ou YX, Da WM, Kang JH (2004) Coadjustment of quercetin and hydrogen peroxide: the role of ROS in the cytotoxicity of quercetin. Pharmazie 59: 155–158.
[38]
Whiteley SJ, Sauve Y, Aviles-Trigueros M, Vidal-Sanz M, Lund RD (1998) Extent and duration of recovered pupillary light reflex following retinal ganglion cell axon regeneration through peripheral nerve grafts directed to the pretectum in adult rats. Exp Neurol 154: 560–572. doi: 10.1006/exnr.1998.6959
[39]
Wilhelm H, Wilhelm B (2003) Clinical applications of pupillography. J Neuroophthalmol 23: 42–49. doi: 10.1097/00041327-200303000-00010
[40]
Demediuk P, Daly MP, Faden AI (1989) Changes in free fatty acids, phospholipids, and cholesterol following impact injury to the rat spinal cord. J Neurosci Res 23: 95–106. doi: 10.1002/jnr.490230113
Schori H, Yoles E, Schwartz M (2001) T-cell-based immunity counteracts the potential toxicity of glutamate in the central nervous system. J Neuroimmunol 119: 199–204. doi: 10.1016/s0165-5728(01)00358-7
[43]
Vorwerk CK, Zurakowski D, McDermott LM, Mawrin C, Dreyer EB (2004) Effects of axonal injury on ganglion cell survival and glutamate homeostasis. Brain Res Bull 62: 485–490. doi: 10.1016/s0361-9230(03)00075-3
[44]
Matteucci A, Frank C, Domenici MR, Balduzzi M, Paradisi S, et al. (2005) Curcumin treatment protects rat retinal neurons against excitotoxicity: effect on N-methyl-D: -aspartate-induced intracellular Ca(2+) increase. Exp Brain Res 167: 641–648. doi: 10.1007/s00221-005-0068-0
[45]
Galindo-Romero C, Valiente-Soriano FJ, Jimenez-Lopez M, Garcia-Ayuso D, Villegas-Perez MP, et al. (2013) Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia. Invest Ophthalmol Vis Sci 54: 974–985. doi: 10.1167/iovs.12-11207
[46]
Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramirez AI, et al. (2012) IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 9: 92. doi: 10.1186/1742-2094-9-92