All Title Author
Keywords Abstract

Foods  2014 

Extraction and Characterization of Highly Gelling Low Methoxy Pectin from Cashew Apple Pomace

DOI: 10.3390/foods3010001

Keywords: cashew apple, low methoxy pectin, purification, molecular features, gelation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Investigation on the pectic substances of cashew ( Anacardium occidentale L.) apple under different acid-extraction conditions (pH 1.0, 1.5, and 2.0) showed that more than 10%–25% of A. occidentale pectins (AOP) could be extracted, depending on the extractant strength. The extracted AOP contained high amounts of galacturonic acid (GalA: 69.9%–84.5%) with some neutral sugars of which rhamnose (Rha: 1.3%–2.5%), arabinose (Ara: 2.6%–5.4%), and galactose (Gal: 4.7%–8.6%) were the main constituents. The degree of methoxylation (DM) was in the range of 28%–46% and was only slightly affected by the extractant strength, thereby indicating isolation of naturally low methoxy pectins (LMP). In terms of gelling capability, AOP yielded firmer Ca 2+-mediated LMP gels than commercial citrus LMP with comparable DM. Cashew apple pomace, therefore, appears to be a potentially viable source for possible production of “non-chemically or enzymatically-tailored” LMP.

References

[1]  Vincken, J.P.; Schols, H.A.; Oomen, R.J.F.J.; McCann, M.C.; Ulvskov, P.; Voragen, A.G.J.; Visser, R.G.F. If homogalacturonan were a side chain of rhamnogalaturonan I. Implications for cell wall architecture. Plant Physiol. 2003, 132, 1781–1789, doi:10.1104/pp.103.022350.
[2]  ?bro, J.; Harholt, J.; Scheller, H.V.; Orfila, C. Rhamnogalacturonan-I in Solanum tuberosum tubers contains complex arabinogalactan structures. Phytochemistry 2004, 65, 1429–1438.
[3]  May, C.D. Industrial pectins: Sources, production and applications. Carbohydr. Polym. 1990, 12, 79–99, doi:10.1016/0144-8617(90)90105-2.
[4]  Voragen, A.G.J.; Pilnik, W.; Thibault, J.-F.; Axelos, M.A.V.; Renard, C.M.G.C. Pectins. In Food Polysaccharides and Their Applications; Stephen, A.M., Ed.; Marcel Dekker: New York, NY, USA, 1955; pp. 287–339.
[5]  La Filière Anacarde en C?te d’Ivoire: Acteurs et Organisation. Available online: http://www.rongead.org/IMG/pdf/Synthese_filiere_anacarde_Pierre_light.pdf (accessed on 14 January 2012).
[6]  Bulletin d’Information Hebdomadaire sur le Marché de l’Anacarde en C?te d’Ivoire. Available online: http://www.rongead.org/IMG/pdf/BIHMA_15_Fevrier_2011.pdf (accessed on 14 January 2012).
[7]  Mohamed, S.; Hasan, Z. Extraction and characterisation of pectin from various tropical agrowastes. ASEAN Food J. 1995, 10, 43–50.
[8]  Mort, A.J.; Moerschbacher, B.M.; Pierce, M.L.; Maness, N.O. Problems encountered during the extraction, purification, and chromatography of pectin fragments and some solutions to them. Carbohydr. Res. 1991, 215, 219–227, doi:10.1016/0008-6215(91)84022-7.
[9]  Yapo, B.M.; Koffi, K.L. Yellow passion fruit rind—A potential source of low-methoxyl pectin. J. Agric. Food Chem. 2006, 54, 2738–2744, doi:10.1021/jf052605q.
[10]  Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275.
[11]  Yapo, B.M.; Koffi, K.L. The polysaccharide composition of yellow passion fruit rind cell wall: Chemical and macromolecular features of extracted pectins and hemicellulosic polysaccharides. J. Sci. Food Agric. 2008, 88, 2125–2133, doi:10.1002/jsfa.3323.
[12]  Yapo, B.M. Improvement of the compositional quality of monocot pectin extracts contaminated with glucuronic acid-containing components using a step-wise purification procedure. Food Bioprod. Proc. 2010, 88, 283–290.
[13]  Turecek, P.L.; Buxbaum, E.; Pittner, F. Quantitative determination of pectic substances as an example of a rhamnopolysaccharide assay. J. Biochem. Biophys. Methods 1989, 19, 215–222, doi:10.1016/0165-022X(89)90028-6.
[14]  Yapo, B.M.; Koffi, K.L. Utilisation of model pectins reveals the effect of demethylated block size frequency on calcium gel formation. Carbohydr. Polym. 2013, 92, 1–10, doi:10.1016/j.carbpol.2012.09.010.
[15]  McComb, E.A.; McCready, R.M. Determination of acetyl in pectin and in acetylated carbohydrate polymers. Anal. Chem. 1957, 29, 819–821, doi:10.1021/ac60125a025.
[16]  Yapo, B.M. Pineapple and banana pectins comprise fewer homogalacturonan building blocks with a smaller degree of polymerization as compared with yellow passion fruit and lemon pectins: Implication for gelling properties. Biomacromolecules 2009, 10, 717–721, doi:10.1021/bm801490e.
[17]  Yapo, B.M.; Lerouge, P.; Thibault, J.F.; Ralet, M.C. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr. Polym. 2007, 69, 426–435, doi:10.1016/j.carbpol.2006.12.024.
[18]  Cardoso, S.M.; Coimbra, M.A.; Lopes da Silva, J.A. Calcium-mediated gelation of an olive pomace pectic extract. Carbohydr. Polym. 2003, 52, 125–133, doi:10.1016/S0144-8617(02)00299-0.
[19]  Iglesias, M.T.; Lozano, J.E. Extraction and characterization of sunflower pectin. J. Food Eng. 2004, 62, 215–223, doi:10.1016/S0260-8774(03)00234-6.
[20]  Kliemann, E.; Nunes de Simas, K.; Amante, E.R.; Prudêncio, E.S.; Teófilo, R.F.; Ferreira, M.M.C.; Amboni, R.D.M.C. Optimisation of pectin acid extraction from passion fruit peel (Passiflora edulis flavicarpa) using response surface methodology. Int. J. Food Sci. Technol. 2009, 44, 476–483, doi:10.1111/j.1365-2621.2008.01753.x.
[21]  Hwang, J.; Kokini, J.L. Contribution of the side branches to rheological properties of pectins. Carbohydr. Polym. 1992, 19, 41–50, doi:10.1016/0144-8617(92)90053-S.

Full-Text

comments powered by Disqus