All Title Author
Keywords Abstract

Foods  2013 

Analysis of Naturally Occurring Phenolic Compounds in Aromatic Plants by RP-HPLC Coupled to Diode Array Detector (DAD) and GC-MS after Silylation

DOI: 10.3390/foods2010090

Keywords: aromatic plants, phenolic compounds, RP-HPLC, GC-MS, silylation

Full-Text   Cite this paper   Add to My Lib


The following aromatic plants of Greek origin, Origanum dictamnus (dictamus), Eucalyptus globulus (eucalyptus), Origanum vulgare L. (oregano), Mellisa officinalis L. (balm mint) and Sideritis cretica (mountain tea), were examined for the content of phenolic substances. Reversed phase HPLC coupled to diode array detector (DAD) was used for the analysis of the plant extracts. The gas chromatography-mass spectrometry method (GC-MS) was also used for identification of phenolic compounds after silylation. The most abundant phenolic acids were: gallic acid (1.5–2.6 mg/100 g dry sample), ferulic acid (0.34–6.9 mg/100 g dry sample) and caffeic acid (1.0–13.8 mg/100 g dry sample). (+)-Catechin and (?)-epicatechin were the main flavonoids identified in oregano and mountain tea. Quercetin was detected only in eucalyptus and mountain tea.


[1]  Singleton, V.L. Naturally occurring food toxicants: Phenolic substances of plant origin common in foods. Adv. Food Res. 1981, 27, 149–242, doi:10.1016/S0065-2628(08)60299-2.
[2]  Herrmann, H. On the occurrence of flavonol and flavone glycosides in vegetables. Z. Lebensm. Unters. Forsch. 1988, 186, 1–5.
[3]  Porter, L.W. Methods in Plant Biochemistry, I: Plant Phenolics; Harborne, J.B., Ed.; Academic Press: London, UK, 1989; pp. 389–419.
[4]  Peleg, H.; Naim, M.; Rouseff, R.L.; Zehavi, U. Distribution of bound and free phenolic acid in oranges (Citrus sinensis) and grapefruits (Citrus paradisi). J. Sci. Food Agric. 1991, 57, 417–426.
[5]  Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584, doi:10.1016/S0955-2863(02)00208-5.
[6]  Jung, H.G. Forage lignins and their effects on fiber digestibility. Agron. J. 1989, 81, 33–38, doi:10.2134/agronj1989.00021962008100010006x.
[7]  Wallace, G.; Chesson, A.; Lomax, J.A.; Jarvis, M.C. Lignin-carbohydrate complexes in graminaceous cell walls in relation to digestibility. Anim. Feed Sci. Tech. 1991, 32, 193–199.
[8]  Lee, H.S.; Widmer, B.W. Handbook of Food Analysis; Nollet, L.M.L., Ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 821–894.
[9]  Harborne, J.B. Phytochemical Methods. A Guide to Modern Techniques of Plant Analysis; Chapman and Hall: London, UK, 1998; pp. 40–106.
[10]  Hertog, M.G.L.; Hollman, P.C.H.; Venema, D.P. Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J. Agric. Food Chem. 1992, 40, 1591–1598, doi:10.1021/jf00021a023.
[11]  Justesen, U.; Knuthsen, P.; Leth, T. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. J. Chrom. A 1998, 799, 101–110.
[12]  Merken, H.M.; Beecher, G.R. Measurement of food flavonoids by high performance liquid chromatography: A review. J. Agric. Food Chem. 2000, 48, 577–599, doi:10.1021/jf990872o.
[13]  Chen, H.; Zuo, Y.; Deng, Y. Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high-performance liquid chromatography. J. Chrom. A 2001, 913, 387–395, doi:10.1016/S0021-9673(00)01030-X.
[14]  Suarez, B.; Picinelli, A.; Mangas, J.J. Solid-phase extraction and high-performance liquid chromatographic determination of polyphenols in apple musts and ciders. J. Chrom. A 1996, 727, 203–209, doi:10.1016/0021-9673(95)01175-7.
[15]  Zuo, Y.; Wang, C.; Zhan, J. Separation, characterization and quantitation of benzoic and phenolic antioxidants in American cranberry fruit by GC-MS. J. Agric. Food Chem. 2002, 50, 3789–3794, doi:10.1021/jf020055f.
[16]  Soleas, G.J.; Diamandis, E.P.; Karumanchiri, A.; Goldberg, D.M. A multiresidue derivatization gas chromatographic assay for fifteen phenolic constituents with mass selective detection. Anal. Chem. 1997, 69, 4405–4409, doi:10.1021/ac961320x.
[17]  Proestos, C.; Chorianopoulos, N.; Nychas, G.J.E.; Komaitis, M. RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. J. Agric. Food Chem. 2005, 53, 1190–1195, doi:10.1021/jf040083t.
[18]  Chu, T.Y.; Chang, C.H.; Liao, Y.C.; Chen, Y.C. Microwave-accelerated derivatization processes for the determination of phenolic acids by gas chromatography-mass spectrometry. Talanta 2001, 54, 1163–1171, doi:10.1016/S0039-9140(01)00392-7.
[19]  Deng, F.; Zito, S.W. Development and validation of a gas chromatographic-mass spectrometric method for simultaneous identification and quantification of marker compounds including bilobalide, gingolides and flavonoids in Ginkgo biloba L. extract and pharmaceutical preparations. J. Chrom. A 2003, 986, 121–127, doi:10.1016/S0021-9673(02)01921-0.
[20]  Betés-Saura, C.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Phenolics in white free run juices and wines from Penedés by high-performance liquid chromatography: Changes during vinification. J. Agric. Food Chem. 1996, 44, 3040–3046, doi:10.1021/jf9601628.
[21]  Robbins, J.R. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003, 51, 2866–2887.
[22]  Halket, J.M. Handbook of Derivatives for Chromatography; Blau, K., Halket, J., Eds.; John Wiley & Sons: West Sussex, UK, 1993; pp. 297–326.
[23]  Donovan, J.L.; Luthria, D.L.; Stremple, P.; Waterhouse, A.L. Analysis of (+)-catechin, (?)-epicatechin and their 3′- and 4′-O-methylated analogs: A comparison of sensitive methods. J. Chrom. B 1999, 726, 277–283.
[24]  Angerosa, F.; D’Alessandro, N.; Konstantinou, P.; di Giacinto, L. GC-MS evaluation of phenolic compounds in virgin olive oil. J. Agric. Food Chem. 1995, 43, 1802–1807, doi:10.1021/jf00055a010.


comments powered by Disqus