All Title Author
Keywords Abstract

Foods  2013 

Comparison of Growth Kinetics of Various Pathogenic E. coli on Fresh Perilla Leaf

DOI: 10.3390/foods2030364

Keywords: E. coli O157:H7, pathogenic E. coli, perilla leaves, growth model, validation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Growth kinetics for Escherichia coli O157:H7 in perilla leaves were compared to those of pathogenic E. coli strains, including enteropathogenic (EPEC), enterotoxigenic (ETEC), enteroinvasive (EIEC) and other enterohemorrhagic (EHEC) at 13, 17, 24, 30 and 36 °C. Models for lag time (LT), specific growth rate (SGR) and maximum population density (MPD) as a function of temperature were developed. The performance of the models was quantified using the ratio method and an acceptable prediction zone method. Significant differences in SGR and LT among the strains were observed at all temperatures. Overall, the shortest LT was observed with E. coli O157:H7, followed by EPEC, other EHEC, EIEC and ETEC, while the fastest growth rates were noted in EPEC, followed by E. coli O157:H7, ETEC, other EHEC and EIEC. The models for E. coli O157:H7 in perilla leaves was suitable for use in making predictions for EPEC and other EHEC strains.

References

[1]  Myron, M.L. Escherichia coli that cause diarrhea: Enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis. 1987, 155, 377–389, doi:10.1093/infdis/155.3.377.
[2]  Cooley, M.; Carychao, D.; Crawford-Miksza, L.; Jay, M.T.; Myers, C.; Rose, C.; Keys, C.; Farrar, J.; Mandrell, R.E. Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PloS One 2007, 2, e1159, doi:10.1371/journal.pone.0001159.
[3]  News, F.Q. Germany Finally Confirms Source of Deadly E. coli Outbreak. Available online: http://www.foodproductiondaily.com/Safety-Regulation/Germany-finally-confirms-source-of-deadly-E.coli-outbreak (accessed on 15 March 2013).
[4]  Korea Centers for Disease Control & Prevention. Available online: http://www.cdc.go.kr/CDC/eng/main.jsp (accessed on 20 Febuary 2013).
[5]  Lee, J.K.; Park, I.H.; Yoon, K.; Kim, H.J.; Cho, J.I.; Lee, S.H.; Hwang, I.G. An analysis of epidemiological investigation reports regarding to pathogenic E. coli outbreaks in Korea from 2009 to 2010. J. Food Hyg. Saf. 2012, 27, 366–374.
[6]  Jinneman, K.C.; Trost, P.A.; Hill, W.E.; Weagant, S.D.; Bryant, J.L.; Kaysner, C.A.; Wekell, M.M. Comparison of template preparation methods from foods for amplification of Escherichia coli O157 Shiga-like toxins type I and II DNA by multiplex polymerase chain reaction. J. Food Prot. 1995, 58, 722–726.
[7]  Kwon, W.H.; Lee, W.G.; Song, J.E.; Kim, K.Y.; Shim, W.B.; Yoon, Y.H.; Kim, Y.S.; Chung, D.H. Microbiological hazard analysis on perilla leaf farms at the harvesting stage for the application of the Good Agricultural Practices (GAP). J. Food Hyg. Saf. 2012, 27, 295–300.
[8]  Choi, J.W.; Park, S.Y.; Yeon, J.H.; Lee, M.J.; Chung, D.H.; Lee, K.H.; Kim, M.G.; Lee, D.H.; Kim, K.S.; Ha, S.D. Microbial contamination levels of fresh vegetables distributed in markets. J. Food Hyg. Saf. 2005, 20, 43–47.
[9]  Jung, S.H.; Hur, M.J.; Ju, J.H.; Kim, K.A.; Oh, S.S.; Go, S.M.; Kim, Y.H.; Im, J.S. Microbiological evaluation of raw vegetable. J. Food Hyg. Saf. 2006, 24, 250–257.
[10]  Park, S.Y.; Choi, J.W.; Chung, D.H.; Kim, M.G.; Lee, K.H.; Kim, K.S.; Bahk, G.J.; Bae, D.H.; Park, S.K.; Kim, K.Y. Development of a predictive mathematical model for the growth kinetics of Listeria monocytogenes in sesame leaves. Food Sci. Biotechnol. 2007, 16, 238–242.
[11]  Oscar, T.P. Extrapolation of a predictive model for growth of a low inoculum size of Salmonella typhimurium DT104 on chicken skin to higher inoculum sizes. J. Food Prot. 2011, 74, 1630–1638, doi:10.4315/0362-028X.JFP-11-127.
[12]  Buchanan, R.L.; Bagi, L.K.; Goins, R.V.; Phillips, J.G. Response surface models for the growth kinetics of Escherichia coli O157:H7. Food Microbiol. 1993, 10, 303–315, doi:10.1006/fmic.1993.1035.
[13]  Kovárová, K.; Zehnder, A.J.; Egli, T. Temperature-dependent growth kinetics of Escherichia coli ML 30 in glucose-limited continuous culture. J. Bacteriol. 1996, 178, 4530–4539.
[14]  Presser, K.A.; Ratkowsky, D.A.; Ross, T. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl. Environ. Microbiol. 1997, 63, 2355–2360.
[15]  Ross, T.; Ratkowsky, D.A.; Mellefont, L.A.; McMeekin, T.A. Modelling the effects of temperature, water activity, pH and lactic acid concentration on the growth rate of Escherichia coli. Int. J. Food Microbiol. 2003, 82, 33–43, doi:10.1016/S0168-1605(02)00252-0.
[16]  Sutherland, J.P.; Bayliss, A.J.; Braxton, D.S.; Beaumont, A.L. Predictive modelling of Escherichia coli O157:H7: Inclusion of carbon dioxide as a fourth factor in a pre-existing model. Int. J. Food Microbiol. 1997, 37, 113–120, doi:10.1016/S0168-1605(97)00056-1.
[17]  Sutherland, J.P.; Bayliss, A.J.; Braxton, D.S. Predictive modelling of growth of Escherichia coli O157:H7: The effects of temperature, pH and sodium chloride. Int. J. Food Microbiol. 1995, 25, 29–49, doi:10.1016/0168-1605(94)00082-H.
[18]  Koseki, S.; Isobe, S. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. Int. J. Food Microbiol. 2005, 104, 239–248, doi:10.1016/j.ijfoodmicro.2005.02.012.
[19]  McKellar, R.C.; Delaquis, P. Development of a dynamic growth-death model for Escherichia coli O157:H7 in minimally processed leafy green vegetables. Int. J. Food Microbiol. 2011, 151, 7–14, doi:10.1016/j.ijfoodmicro.2011.07.027.
[20]  Daughtry, B.J.; Davey, K.R.; King, K.D. Temperature dependence of growth kinetics of food bacteria. Food Microbiol. 1997, 14, 21–30, doi:10.1006/fmic.1996.0064.
[21]  Oscar, T.P. Development and validation of a tertiary simulation model for predicting the potential growth of Salmonella typhimurium on cooked chicken. Int. J. Food Microbiol. 2002, 76, 177–190, doi:10.1016/S0168-1605(02)00025-9.
[22]  Ratkowsky, D.A.; Olley, J.; McMeekin, T.A.; Ball, A. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 1982, 149, 1–5.
[23]  McMeekin, T.A.; Olley, J.; Ross, T. Predictive Microbiology: Theory and Application; John Wiley & Sons Ltd.: Taunton, UK, 1993.
[24]  Ross, T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Microbiol. 1996, 81, 501–508.
[25]  Oscar, T.P. Validation of lag time and growth rate models for Salmonella typhimurium: Acceptable prediction zone method. J. Food Sci. 2005, 70, 129–137, doi:10.1111/j.1365-2621.2005.tb07103.x.
[26]  Abou-Zeid, K.A.; Oscar, T.P.; Schwarz, J.G.; Hashem, F.M.; Whiting, R.C.; Yoon, K. Development and validation of a predictive model for Listeria monocytogenes Scott A as a function of temperature, pH, and commercial mixture of potassium lactate and sodium diacetate. J. Mircobiol. Biotechnol. 2009, 19, 718–726.
[27]  Delignette-Muller, M.L.; Rosso, L.; Flandrois, J.P. Accuracy of microbial growth predictions with square root and polynomial models. Int. J. Food Microbiol. 1995, 27, 139–146, doi:10.1016/0168-1605(94)00158-3.
[28]  McKellar, R.C.; Lu, X. Modeling Microbial Responses in Food; CRC Press: Boca Raton, FL, USA, 2003.
[29]  Salter, M.A.; Ross, T.; McMeekin, T.A. Applicability of a model for non-pathogenic Escherichia coli for predicting the growth of pathogenic Escherichia coli. J. Appl. Microbiol. 1998, 85, 357–364.

Full-Text

comments powered by Disqus