All Title Author
Keywords Abstract

Sensors  2013 

Quality Evaluation of Agricultural Distillates Using an Electronic Nose

DOI: 10.3390/s131215954

Keywords: electronic nose, agricultural distillates, PCA, cluster analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper presents the application of an electronic nose instrument to fast evaluation of agricultural distillates differing in quality. The investigations were carried out using a prototype of electronic nose equipped with a set of six semiconductor sensors by FIGARO Co., an electronic circuit converting signal into digital form and a set of thermostats able to provide gradient temperature characteristics to a gas mixture. A volatile fraction of the agricultural distillate samples differing in quality was obtained by barbotage. Interpretation of the results involved three data analysis techniques: principal component analysis, single-linkage cluster analysis and cluster analysis with spheres method. The investigations prove the usefulness of the presented technique in the quality control of agricultural distillates. Optimum measurements conditions were also defined, including volumetric flow rate of carrier gas (15 L/h), thermostat temperature during the barbotage process (15 °C) and time of sensor signal acquisition from the onset of the barbotage process (60 s).

References

[1]  Plutowska, B.; Biernacka, P.; Wardencki, W.; Brew, J.I. Identification of volatile compounds in raw spirits of different organoleptic quality. J. Inst. Brew. 2010, 116, 433–439.
[2]  Di Natale, C.; Davide, F.A.M.; D'Amico, A.; Nelli, P.; Groppelli, S.; Sberveglieri, G. An electronic nose for the recognition of the vineyard of a red wine. Sens. Actuators B. 1996, 33, 83–88.
[3]  Aleixandre, M.; Lozano, J.; Gutiérrez, J.; Sayago, I.; Fernández, M.J.; Horrillo, M.C. Portable e-nose to classify different kinds of wine. Sens. Actuators B. 2008, 131, 71–76.
[4]  Lozano, J.; Arroyo, T.; Santos, J.P.; Cabellos, J.M.; Horrillo, M.C. Electronic nose for wine ageing detection. Sens. Actuators B. 2008, 133, 180–186.
[5]  Lozano, J.; Fernández, M.J.; Fontecha, J.; Aleixandre, M.; Santos, J.P.; Sayago, I.; Arroyo, T.; Cabellos, J.M.; Gutiérrez, F.J.; Horrillo, M.C. Wine classification with a zinc oxide SAW sensor array. Sens. Actuators B. 2006, 120, 166–171.
[6]  Lozano, J.; Santos, J.P.; Arroyo, T.; Aznar, M.; Cabellos, J.M.; Gil, M.; Horrillo, M.C. Correlating e-nose responses to wine sensorial descriptors and gas chromatography-mass spectrometry profiles using partial least squares regression analysis. Sens. Actuators B. 2007, 127, 267–276.
[7]  Lozano, J.; Santos, J.P.; Gutiérrez, J.; Horrillo, M.C. Comparative study of sampling systems combined with gas sensors for wine discrimination. Sens. Actuators B. 2007, 126, 616–623.
[8]  Santos, J.P.; Arroyo, T.; Aleixandre, M.; Lozano, J.; Sayago, I.; García, M.; Fernández, M.J.; Arés, L.; Gutiérrez, J.; Cabellos, J.M.; et al. A comparative study of sensor array and GC-MS: Application to Madrid wines characterization. Sens. Actuators B. 2004, 102, 299–307.
[9]  Santos, J.P.; Lozano, J.; Aleixandre, M.; Sayago, I.; Fernández, M.J.; Arés, L.; Gutiérrez, J.; Horrillo, M.C. Discrimination of different aromatic compounds in water, ethanol and wine with a thin film sensor array. Sens. Actuators B. 2004, 103, 98–103.
[10]  Lozano, J.; Santos, J.P.; Horrillo, M.C. Classification of white wine aromas with an electronic nose. Talanta 2005, 67, 610–616.
[11]  García, M.; Aleixandre, M.; Gutiérrez, J.; Horrillo, M. Electronic nose for wine discrimination. Sens. Actuators B. 2006, 113, 911–916.
[12]  Buratti, S.; Ballabio, D.; Benedetti, S.; Cosio, M.S. Prediction of Italian red wine sensorial descriptors from electronic nose, electronic tongue and spectrophotometric measurements by means of Genetic Algorithm regression models. Food Chem. 2007, 100, 211–218.
[13]  Brezmes, J.; Llobet, E.; Vilanova, X.; Saiz, G.; Correig, X. Fruit ripeness monitoring using an Electronic Nose. Sens. Actuators B. 2000, 69, 223–229.
[14]  Boilot, P.; Hines, E.L.; Gongora, M.A.; Folland, R.S. Electronic noses inter-comparison, data fusion and sensor selection in discrimination of standard fruit solutions. Sens. Actuators B. 2003, 88, 80–88.
[15]  Brezmes, J.; Llobet, E.; Vilanova, X.; Orts, J.; Saiz, G.; Correig, X. Correlation between electronic nose signals and fruit quality indicators on shelf-life measurements with pinklady apples. Sens. Actuators B. 2001, 80, 41–50.
[16]  Guadarrama, A.; Fernández, J.; í?iguez, M.; Souto, J.; de Saja, J. Array of conducting polymer sensors for the characterisation of wines. Anal. Chim. Acta. 2000, 411, 193–200.
[17]  Guadarrama, A.; Ferna, J.; Souto, J.; de Saja, J. Discrimination of wine aroma using an array of conducting polymer sensors in conjunction with solid-phase micro-extraction (SPME) technique. Sens. Actuators B. 2001, 77, 401–408.
[18]  Lebrun, M.; Plotto, A.; Goodner, K.; Ducamp, M.N.; Baldwin, E. Discrimination of mango fruit maturity by volatiles using the electronic nose and gas chromatography. Postharvest Biol. Technol. 2008, 48, 122–131.
[19]  Martí, M.P.; Boqué, R.; Busto, O.; Guasch, J. Electronic noses in the quality control of alcoholic beverages. Trends Anal. Chem. 2005, 24, 57–66.
[20]  Dymerski, T.M.; Chmiel, T.M.; Wardencki, W. Invited review article: An odor-sensing system-powerful technique for foodstuff studies. Rev. Sci. Instrum. 2011, 82, 1–32.
[21]  Dymerski, T.; Chmiel, T.; Mostafa, A.; ?liwińska, M.; Wi?niewska, P.; Wardencki, W.; Namie?nik, J.; Górecki, T. Botanical and geographical origin characterization of polish honeys by headspace SPME-GC×GC-TOFMS. Curr. Org. Chem. 2013, 17, 853–870.
[22]  Plutowska, B.; Chmiel, T.; Dymerski, T.; Wardencki, W. A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food Chem. 2011, 126, 1288–1298.
[23]  Falqué, E.; Fernández, E.; Dubourdieu, D. Differentiation of white wines by their aromatic index. Talanta 2001, 54, 271–281.
[24]  Gewu, W. Identification of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 2, 3022–3026.
[25]  Bauer-Christoph, C.; Christoph, N.; Aguilar-Cisneros, B.O.; Lopez, M.G.; Richling, E.; Rossmann, A.; Schreier, P. Authentication of tequila by gas chromatography and stable isotope ratio analyses. Eur. Food Res. Technol. 2003, 217, 438–443.
[26]  Cortés, S.; Gil, L.M.; Fernández, E. Volatile composition of traditional and industrial Orujo spirits. Food Control 2005, 16, 383–388.
[27]  Ebeler, S.E.; Terrien, M.B.; Butzke, C.E. Analysis of brandy aroma by solid-phase microextraction and liquid-liquid extraction. J. Sci. Food Agric. 2000, 630, 625–630.
[28]  Diéguez, S.C.; Díaz, L.D.; Luisa, M.; de La Pe?a, G.; Gómez, E.F. Variation of volatile organic acids in spirits during storage at low and room temperatures. Food Sci. Technol. 2002, 35, 452–457.
[29]  Harynuk, J.; Górecki, T. Comprehensive two-dimensional gas chromatography in stop-flow mode. J. Sep. Sci. 2004, 27, 431–441.
[30]  Pi?eiro, Z.; Palma, M.; Barroso, C.G. Determination of terpenoids in wines by solid phase extraction and gas chromatography. Anal. Chim. Acta. 2004, 513, 209–214.
[31]  Wardencki, W.; Chmiel, T.; Dymerski, T.; Biernacka, P.; Plutowska, B. Application of gas chromatography, mass spectrometry and olfactometry for quality assessment of selected food products. Ecol. Chem. Eng. S. 2009, 16, 287–300.
[32]  Aznar, M.; López, R.; Cacho, J.F.; Ferreira, V. Identification and quantification of impact odorants of aged red wines from Rioja. GC-olfactometry, quantitative GC-MS, and odor evaluation of HPLC fractions. J. Agric. Food Chem. 2001, 49, 2924–2929.
[33]  Callemien, D.; Dasnoy, S.; Collin, S. Identification of a stale-beer-like odorant in extracts of naturally aged beer. J. Agric. Food Chem. 2006, 54, 1409–1413.
[34]  Demyttenaere, J.C.R.; Dagher, C.; Sandra, P.; Kallithraka, S.; Verhé, R.; de Kimpe, N. Flavour analysis of Greek white wine by solid-phase microextraction-capillary gas chromatography-mass spectrometry. J. Chromatogr. A. 2003, 985, 233–246.
[35]  Dymerski, T.; G?bicki, J.; Wi?niewska, P.; Sliwińska, M.; Wardencki, W.; Namie?nik, J. Application of the electronic nose technique to differentiation between model mixtures with COPD markers. Sensors 2013, 13, 5008–5027.
[36]  Maekawa, T.; Suzuki, K.; Takada, T.; Kobayashi, T.; Egashira, M. Odor identification using a SnO2-based sensor array. Sens. Actuators B. 2001, 80, 51–58.
[37]  Schaller, E.; Bosset, J.; Escher, F. “Electronic Noses” and their application to food. Food Sci. Technol. 1998, 31, 305–316.
[38]  Chueh, H.; Hatfield, J. A real-time data acquisition system for a hand-held electronic nose (H2EN). Sens. Actuators B. 2002, 83, 262–269.
[39]  Dymerski, T.; Wardencki, W.; G?bicki, J.; Fija?o, C.; ?wi?toniowski, B. Sposób oceny jako?ci destylatu rolniczego i urz?dzenie do oceny jako?ci destylatów rolniczych. Polish Patent No. P.403448,2012.

Full-Text

comments powered by Disqus