All Title Author
Keywords Abstract

Pharmaceutics  2013 

Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles

DOI: 10.3390/pharmaceutics5020277

Keywords: maize, microparticles, protein, drug loading, in vitro digestibility, electrophoresis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zein was investigated for use as an oral-drug delivery system by loading prednisolone into zein microparticles using coacervation. To investigate the adaptability of this method to other drugs, zein microparticles were loaded with hydrocortisone, which is structurally related to prednisolone; or mesalazine, which is structurally different having a smaller LogP and ionizable functional groups. Investigations into the in vitro digestibility, and the electrophoretic profile of zein, and zein microparticles were conducted to shed further insight on using this protein as a drug delivery system. Hydrocortisone loading into zein microparticles was comparable with that reported for prednisolone, but mesalazine loading was highly variable. Depending on the starting quantities of hydrocortisone and zein, the average amount of microparticles equivalent to 4 mg hydrocortisone, (a clinically used dose), ranged from 60–115 mg, which is realistic and practical for oral dosing. Comparatively, an average of 2.5 g of microparticles was required to deliver 250 mg of mesalazine (a clinically used dose), so alternate encapsulation methods that can produce higher and more precise mesalazine loading are required. In vitro protein digestibility revealed that zein microparticles were more resistant to digestion compared to the zein raw material, and that individual zein peptides are not preferentially coacervated into the microparticles. In combination, these results suggest that there is potential to formulate a delivery system based on zein microparticles made using specific subunits of zein that is more resistant to digestion as starting material, to deliver drugs to the lower gastrointestinal tract.

References

[1]  Therapeutic Guidelines. In Gastrointestinal, 5th; Rogers, S., Ed.; Therapeutic Guidelines Limited: Victoria, Australia, 2011.
[2]  Australian Medicines Handbook Online; Rossi, S., Ed.; Australian Medicines Handbook Pty Ltd.: Adelaide, Australia, 2013.
[3]  Wallace, J.L.; Sharkey, K.A. Pharmacotherapy of Inflammatory Bowel Disease. In Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12th; Brunton, L.L., Chabner, B.A., Knollmann, B.C., Eds.; McGraw-Hill: New York, NY, USA, 2011.
[4]  Watts, P.J.; Illum, L. Colonic drug delivery. Drug Dev. Ind. Pharm. 1997, 23, 893–913, doi:10.3109/03639049709148695.
[5]  Wilding, I.R.; Davis, S.S. Targeting of Drugs to the Gut. In Encyclopedia of Pharmaceutical Technology; Swarbrick, J., Boylan, J.C., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1999; Volume 18, pp. 287–308.
[6]  Sinha, V.R.; Kumria, R. Microbially triggered drug delivery to the colon. Eur. J. Pharm. Sci. 2003, 18, 3–18, doi:10.1016/S0928-0987(02)00221-X.
[7]  Jain, S.K.; Jain, A. Target-specific drug release to the colon. Expert Opin. Drug Deliv. 2008, 5, 483–498, doi:10.1517/17425247.5.5.483.
[8]  CFR—Code of Federal Regulations Title 21. U.S. Patent 184.1984, 1 April 2012.
[9]  Fu, T.J.; Abbott, U.R.; Hatzos, C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid—A comparative study. J. Agric. Food Chem. 2002, 50, 7154–7160, doi:10.1021/jf020599h.
[10]  Liu, X.; Sun, Q.; Wang, H.; Zhang, L.; Wang, J. Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials 2005, 26, 109–115, doi:10.1016/j.biomaterials.2004.02.013.
[11]  Georget, D.M.R.; Barker, S.A.; Belton, P.S. A study on maize proteins as a potential new tablet excipient. Eur. J. Pharm. Biopharm. 2008, 69, 718–726, doi:10.1016/j.ejpb.2008.01.006.
[12]  Parris, N.; Cooke, P.; Hicks, K. Encapsulation of essential oils in zein nanospherical particles. J. Agric. Food Chem. 2005, 53, 4788–4792, doi:10.1021/jf040492p.
[13]  Zhong, Q.; Jin, M. Nanoscalar structures of spray-dried zein microcapsules and in vitro release kinetics of the encapsulated lysozyme as affected by formulations. J. Agric. Food Chem. 2009, 57, 2886–2894.
[14]  Lau, E.T.L.; Johnson, S.K.; Mikkelsen, D.; Halley, P.J.; Steadman, K.J. Preparation and in vitro release of zein microparticles loaded with prednisolone for oral delivery. J. Microencapsul. 2012, 29, 706–712, doi:10.3109/02652048.2012.686527.
[15]  Demchak, R.J.; Dybas, R.A. Photostability of abamectin/zein microspheres. J. Agric. Food. Chem. 1997, 45, 260–262, doi:10.1021/jf960356n.
[16]  Martindale the Complete Drug Reference, 36th; Sweetman, S.C., Ed.; Pharmaceutical Press: London, UK, 2009; p. 1745.
[17]  Wang, H.J.; Lin, Z.X.; Liu, X.M.; Sheng, S.Y.; Wang, J.Y. Heparin-loaded zein microsphere film and hemocompatibility. J. Control. Release 2005, 105, 120–131, doi:10.1016/j.jconrel.2005.03.014.
[18]  Dhaneshwar, S.S.; Gairola, N.; Kandpal, M.; Vadnerkar, G.; Bhatt, L.; Rathi, B.; Kadam, S.S. Synthesis, kinetic studies and pharmacological evaluation of mutual azo prodrugs of 5-aminosalicylic acid for colon-specific drug delivery in inflammatory bowel disease. Eur. J. Med. Chem. 2009, 44, 3922–3929, doi:10.1016/j.ejmech.2009.04.018.
[19]  Ali, H.S.M.; York, P.; Blagden, N.; Soltanpour, S.; Acree, W.E., Jr.; Jouyban, A. Solubility of budesonide, hydrocortisone, and prednisolone in ethanol + water mixtures at 298.2 K. J. Chem. Eng. Data 2010, 55, 578–582, doi:10.1021/je900376r.
[20]  French, D.L.; Mauger, J.W. Evaluation of the physicochemical properties and dissolution characteristics of mesalamine: Relevance to controlled intestinal drug delivery. Pharm. Res. 1993, 10, 1285–1290, doi:10.1023/A:1018909527659.
[21]  Hurtado-Lopez, P.; Murdan, S. Zein microspheres as drug/antigen carriers: A study of their degredation and erosion, in the presence and absence of enzymes. J. Microencapsul. 2006, 23, 303–314.
[22]  American Association of Cereal Chemists. Approved Methods of the American Association of Cereal Chemists, Standard Method 46–30, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000.
[23]  Aboubacar, A.; Axtell, J.D.; Huang, C.P.; Hamaker, B.R. A rapid protein digestibility assay for identifying highly digestible sorghum lines. Cereal Chem. 2001, 78, 160–165, doi:10.1094/CCHEM.2001.78.2.160.
[24]  Mertz, E.; Hassen, M.; Cairns-Whittern, C.; Kirleis, A.W.; Tu, L.; Axtell, J.D. Pepsin digestibility of proteins in sorghum and other major cereals. Proc. Natl. Acad. Sci. USA 1984, 81, 1–2.
[25]  Hamaker, B.R.; Mohamed, A.A.; Habben, J.E.; Huang, C.P.; Larkins, B.A. Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than conventional method. Cereal Chem. 1995, 72, 583–588.
[26]  Nunes, A.; Correia, I.; Barros, A.; Delgadillo, I. Sequential in vitro pepsin digestion of uncooked and cooked sorghum maize samples. J. Agric. Food. Chem. 2004, 52, 2052–2058, doi:10.1021/jf0348830.
[27]  Laidlaw, H.K.C.; Mace, E.S.; Williams, S.B.; Sakrewski, K.; Mudge, A.M.; Prentis, P.J.; Jordan, D.R.; Godwin, I.D. Allelic variation of the beta-, gamma- and delta-kafirin genes in diverse Sorghum genotypes. Theor. Appl. Genet. 2010, 121, 1227–1237, doi:10.1007/s00122-010-1383-9.
[28]  Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Boutina, D.; Beck, G.; Sherborne, B.; Cooper, I.; et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham Descriptors. J. Pharm. Sci. 2000, 90, 749–784.
[29]  Patel, A.; Vaghasiya, A.; Gajera, R.; Baluja, S. Solubility of 5-amino salicylic acid in different solvents at various temperatures. J. Chem. Eng. Data 2010, 55, 1453–1455, doi:10.1021/je900646u.
[30]  Capsugel Belgium NV. Coni-Snap Hard Gelatin Capsules: Coni-Snap Capsules Brochure. Available online: http://capsugel.com/en/products-services/products/capsules/coni-snap/ (accessed on 22 December 2012).
[31]  Padua, G.W.; Wang, Q. Controlled Self-Organization of Zein Nanostructures for Encapsulation of Food Ingredients. In Micro/Nanoencapsulation of Active Food Ingredients; Huang, Q., Given, P., Qian, M., Eds.; American Chemical Society: Washington DC, USA, 2009; Volume 1007, pp. 143–155.
[32]  Kim, S.; Xu, J. Aggregate formation of zein and its structural inversion in aqueous ethanol. J. Cereal Sci. 2008, 47, 1–5, doi:10.1016/j.jcs.2007.08.004.
[33]  Bodmeier, R.; McGinity, J.W. Polylactic acid microspheres containing quinidine base and quinidine sulphate prepared by the solvent evaporation technique. I. Methods and morphology. J. Microencapsul. 1987, 4, 279–288, doi:10.3109/02652048709021820.
[34]  Bodmeier, R.; McGinity, J.W. Polylactic acid microspheres containing quinidine base and quinidine sulphate prepared by the solvent evaporation technique. II. Some process parameters influencing the preparation and properties of microspheres. J. Microencapsul. 1987, 4, 289–297, doi:10.3109/02652048709021821.
[35]  Kas, H.S.; Oner, L. Microencapsulation using coacervation/phase separation: An overview of the technique and applications. In Handbook of Pharmaceutical Controlled Release Technology; Wise, D.L., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2000; pp. 301–328.
[36]  Ghosh, S.K. Functional Coatings and Microencapsulation: A General Perspective. In Functional Coatings: By Polymer Microencapsulation; Ghosh, S.K., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 1–28.
[37]  Shahidi, F.; Han, X. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 1993, 33, 501–547, doi:10.1080/10408399309527645.
[38]  Gibbs, B.F.; Kermasha, S.; Alli, I.; Mulligan, C.N. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 1999, 50, 213–224, doi:10.1080/096374899101256.
[39]  Sigma-Aldrich. Zein—Product specification. Available online: http://www.sigmaaldrich.com/Graphics/COfAInfo/SigmaSAPQM/SPEC/W555025/W555025-BULK______ALDRICH__.pdf (accessed 23 August 2012).
[40]  Gillgren, T.; Stading, M. Mechanical and barrier properties of avenin, kafirin, and zein films. Food Biophys. 2008, 3, 287–294, doi:10.1007/s11483-008-9074-7.
[41]  Hurtado-Lopez, P.; Murdan, S. Formulation and characterisation of zein microspheres as delivery vehicles. J. Drug. Deliv. Sci. Technol. 2005, 15, 267–272.
[42]  Esen, A. A proposed nomenclature for the alcohol-soluble proteins (zein) of maize (Zea mays L.). J. Cereal Sci. 1987, 5, 117–128.
[43]  Lee, S.H.; Hamaker, B.R. Cys155 of 27 kDa maize γ-zein is a key amino acid to improve its in vitro digestibility. FEBS Lett. 2006, 580, 5803–5806, doi:10.1016/j.febslet.2006.09.033.

Full-Text

comments powered by Disqus