All Title Author
Keywords Abstract

Pathogens  2013 

The Metabolic and Ecological Interactions of Oxalate-Degrading Bacteria in the Mammalian Gut

DOI: 10.3390/pathogens2040636

Keywords: oxalate-degrading bacteria, gut microbiota, plant secondary compounds, oxalate, biotransformation

Full-Text   Cite this paper   Add to My Lib


Oxalate-degrading bacteria comprise a functional group of microorganisms, commonly found in the gastrointestinal tract of mammals. Oxalate is a plant secondary compound (PSC) widely produced by all major taxa of plants and as a terminal metabolite by the mammalian liver. As a toxin, oxalate can have a significant impact on the health of mammals, including humans. Mammals do not have the enzymes required to metabolize oxalate and rely on their gut microbiota for this function. Thus, significant metabolic interactions between the mammalian host and a complex gut microbiota maintain the balance of oxalate in the body. Over a dozen species of gut bacteria are now known to degrade oxalate. This review focuses on the host-microbe and microbe-microbe interactions that regulate the degradation of oxalate by the gut microbiota. We discuss the pathways of oxalate throughout the body and the mammalian gut as a series of differentiated ecosystems that facilitate oxalate degradation. We also explore the mechanisms and functions of microbial oxalate degradation along with the implications for the ecological and evolutionary interactions within the microbiota and for mammalian hosts. Throughout, we consider questions that remain, as well as recent technological advances that can be employed to answer them.


[1]  Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65, doi:10.1038/nature08821.
[2]  Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the gut microbiota and the immune system. Science 2012, 336, 1268–1273, doi:10.1126/science.1223490.
[3]  Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Petterson, S. Host-gut microbiota metabolic interactions. Science 2012, 336, 1262–1267, doi:10.1126/science.1223813.
[4]  Guarner, F.; Bourdet-Sicard, R.; Brandtzaeg, P.; Gill, H.S.; McGuirk, P.; van Eden, W.; Versalovic, J.; Weinstock, J.V.; Rook, G.A.M. Mechanisms of disease: The hygiene hypothesis revisited. Nat. Rev. Gastro. Hepat. 2006, 3, 275–284.
[5]  O’Hara, A.M.; Shanahan, F. The gut microbiota as a forgotten organ. EMBO 2006, 7, 688–693, doi:10.1038/sj.embor.7400731.
[6]  Dethlefsen, L.; McFall-Ngai, M.; Relman, D.A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007, 449, 811–818, doi:10.1038/nature06245.
[7]  Martin, F.P.J.; Wang, Y.; Sprenger, N.; Yap, I.K.S.; Lundstedt, T.; Lek, P.; Rezzi, S.; Ramadan, Z.; van Bladeren, P.; Fay, L.B.; et al. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 2008, 4, 1–15.
[8]  Kaufman, D.W.; Kelly, J.P.; Curhan, G.C.; Anderson, T.E.; Dretler, S.P.; Preminger, G.M.; Cave, D.R. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephro. 2008, 19, 1197–1203, doi:10.1681/ASN.2007101058.
[9]  Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immun. 2009, 9, 313–323, doi:10.1038/nri2515.
[10]  Gómez-Hurtado, I.; Santacruz, A.; Peiró, G.; Zapater, P.; Gutiérrez, A.; Pérez-Mateo, M.; Sanz, Y.; Francés, R. Gut microbiota dysbiosis is associated with inflammation and bacterial translocation in mice with CCL4-induced fibrosis. PLoS One 2011, doi:10.1371/journal.pone.0023037.
[11]  Baker, P.I.; Love, D.R.; Ferguson, L.R. Role of gut microbiota in Crohn’s disease. Expert Rev. Gastroenterol. Hepatol. 2009, 3, 535–546, doi:10.1586/egh.09.47.
[12]  Vijay-Kumar, M.; Aitken, J.D.; Carvalho, F.A.; Cullender, T.C.; Mwangi, S.; Srinivasan, S.; Sitaraman, S.V.; Knight, R.; Ley, R.E.; Gewirtz, A.T. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 2010, 328, 228–231, doi:10.1126/science.1179721.
[13]  Musso, G.; Gambino, R.; Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Ann. Rev. Med. 2011, 62, 361–380, doi:10.1146/annurev-med-012510-175505.
[14]  Chung, W.G.; Roh, H.K.; Kim, H.M.; Cha, Y.N. Involvement of CYP3A1, 2B1 and 2E1 in C-8 hydroxylation and CYP1A2 and flavin-containing monooxygenase in N-demethylation of caffeine: Identified by using inducer treated rat liver microsomes that are characterized with testosterone metabolic patterns. Chem. Biol. Interact. 1998, 113, 1–14, doi:10.1016/S0009-2797(97)00109-9.
[15]  Holmes, R.P.; Goodman, H.O.; Assimos, D.G. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 2001, 59, 270–276, doi:10.1046/j.1523-1755.2001.00488.x.
[16]  Forbey, J.S.; Harvey, A.L.; Huffman, M.A.; Provenza, F.D.; Sullivan, R.; Tasdemir, D. Exploitation of secondary metabolites by animals: A response to homeostatic challenges. Int. Comp. Biol. 2009, 49, 314–328, doi:10.1093/icb/icp046.
[17]  Forbey, J.S.; Dearing, M.D.; Gross, E.M.; Orians, C.M.; Sotka, E.E.; Foley, W.J. A pharm-ecological approach of terrestrial and aquatic plant-herbivore interactions. J. Chem. Ecol. 2013, 39, 465–480, doi:10.1007/s10886-013-0267-2.
[18]  Torregrossa, A.M.; Dearing, M.D. Nutritional ecology of mammals: Regulated intake of plant secondary compounds. Funct. Ecol. 2009, 23, 48–56, doi:10.1111/j.1365-2435.2008.01523.x.
[19]  Dearing, M.D.; Foley, W.J.; McClean, S. The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Ann. Rev. Ecol. Evol. Syst. 2005, 36, 169–189, doi:10.1146/annurev.ecolsys.36.102003.152617.
[20]  Freeland, W.J.; Jansen, D.H. Strategies in herbivory by mammals. Am. Nat. 1974, 108, 269–288.
[21]  Karasov, W.H.; Carey, H.V. Metabolic teamwork between gut microbes and host. Microbe 2009, 4, 323–328.
[22]  Jones, R.J.; Megarrity, R.G. Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome toxicity of Leucaena. Aust. Vet. J. 1986, 63, 259–262, doi:10.1111/j.1751-0813.1986.tb02990.x.
[23]  Sasaki, E.; Shimada, T.; Osawa, R.; Nishitani, Y.; Spring, S.; Lang, E. Isolation of tannin-degrading bacteria from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Syst. Appl. Microbiol. 2005, 28, e358, doi:10.1016/j.syapm.2005.01.005.
[24]  Shimada, T.; Saitoh, T.; Sasaki, E.; Nishitani, Y.; Osawa, R. Role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins. J. Chem. Ecol. 2006, 32, 1165–1180, doi:10.1007/s10886-006-9078-z.
[25]  Rodríguez, H.; de la Rivas, B.; Gómez-Cordovés, C.; Mu?ez, R. Degradation of tannic acid by cell-free extracts of Lactobacillus planarum. Food Chem. 2008, 107, 664–670, doi:10.1016/j.foodchem.2007.08.063.
[26]  Hiura, D.; Hashidoko, Y.; Kobayashi, Y.; Tahara, S. Effective degradation of tannic acid by immobilized rumen microbes of a sika deer (Cervus nippon yesoensis) in winter. Anim. Feed. Sci.Tech. 2010, 155, 1–8, doi:10.1016/j.anifeedsci.2009.09.015.
[27]  Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.; Ramey, R.R.; Bircher, J.S.; Schegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of mammals and their gut microbes. Science 2008, 320, 1647–1651, doi:10.1126/science.1155725.
[28]  Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011, 332, 970–973, doi:10.1126/science.1198719.
[29]  Conyers, R.A.J.; Bals, R.; Rofe, A.M. The relation of clinical catastrophes, endogenous oxalate production, and urolithiasis. Clin. Chem. 1990, 36, 1717–1730.
[30]  Holmes, R.P.; Kennedy, M. Estimation of the oxalate content of foods and daily oxalate intake. Kidney Int. 2000, 57, 1662–1667, doi:10.1046/j.1523-1755.2000.00010.x.
[31]  Jaeger, P.; Robertson, W.G. Role of dietary intake and intestinal absorption of oxalate in calcium stone formation. Nephron Physiol. 2004, 98, 64–71, doi:10.1159/000080266.
[32]  Franceschi, V.R.; Nakata, P.A. Calcium oxalate in plants: Formation and function. Ann. Rev. Plant Biol. 2005, 56, 41–71, doi:10.1146/annurev.arplant.56.032604.144106.
[33]  Knight, J.; Jiang, J.; Assimos, D.G.; Holmes, R.P. Hydroxyproline ingestion and urinary oxalate and glyoxalate excretion. Kidney Int. 2006, 70, 1929–1934.
[34]  Massey, L.K. Food oxalate: Factors affecting measurement, biological variation, and bioavailability. J. Am. Diet. Assoc. 2007, 107, 1191–1194, doi:10.1016/j.jada.2007.04.007.
[35]  Taylor, E.N.; Curhan, G.C. Determinants of 24-hour urinary oxalate excretion. Clin. J. Am. Soc. Nephrol. 2008, 3, 1453–1460, doi:10.2215/CJN.01410308.
[36]  Hess, B.; Jost, C.; Zipperle, L.; Takkinen, R.; Jaegar, P. High-calcium intake abolishes hyperoxaluria and reduces urinary crystallization during a 20-fold normal oxalate load in humans. Nephrol. Dial. Transpl. 1998, 13, 2241–2247, doi:10.1093/ndt/13.9.2241.
[37]  Aslani, M.R.; Movassaghi, A.R.; Najarnezhad, V.; Pirouz, H.J.; Bami, M.H. Acute oxalate intoxication associated to ingestion of eshnan (Seidlitzia rosmarinus) in sheep. Trop. Anim. Health Prod. 2011, 43, 1065–1068, doi:10.1007/s11250-011-9818-0.
[38]  James, L.F.; Butcher, J.E. Halogeton poisoning of sheep: Effect of high level of oxalate intake. J. Anim. Sci. 1972, 35, 1233–1238.
[39]  Concon, J.M. Food Toxicology—Principles and Concepts; Marcel Dekker: New York, NY, USA, 1988.
[40]  Amoroso, A.; Pirulli, D.; Florian, F.; Puzzer, D.; Boniotto, M.; Crovella, S.; Zezlina, S.; Spano, A.; Mazzola, G.; Savoldi, S.; et al. AGXT gene mutations and their influence on clinical heterogeneity of type 1 primary hyperoxaluria. J. Am. Soc. Nephrol. 2001, 12, 2072–2079.
[41]  Siener, R.; Ebert, D.; Nicolay, C.; Hesse, A. Dietary risk factors for hyperoxaluria in calcium oxalate stone formers. Kidney Int. 2003, 63, 1037–1043, doi:10.1046/j.1523-1755.2003.00807.x.
[42]  Coe, F.L.; Evan, A.; Worcester, E. Kidney stone disease. J. Clin. Invest. 2005, 115, 2598–2608, doi:10.1172/JCI26662.
[43]  Hodgkinson, A. Oxalic Acid in Biology and Medicine; Academic Press: New York, NY, USA, 1977.
[44]  Hoppe, B.; Beck, B.; Gatter, N.; von Unruh, G.; Tischer, A.; Hesse, A.; Laube, N.; Kaul, P.; Sidhu, H. Oxalobacter formigenes: A potential tool for the treatment of primary hyperoxaluria type I. Kidney Int. 2006, 70, 1305–1311, doi:10.1038/
[45]  Sidhu, H.; Schmidt, M.E.; Cornelius, J.G.; van Thamilsel, S.; Khan, S.R.; Hesse, A.; Peck, A.B. Direct correlation between hyperoxaluria/oxalate stone disease and the absence of the gastrointestinal tract-dwelling bacterium Oxalobacter formigenes: Possible prevention by gut recolonization or enzyme replacement therapy. J. Am. Soc. Nephrol. 1999, 10, 334–340.
[46]  Sidhu, H.; Allison, M.J.; May Chow, J.O.; Clark, A.; Peck, A.B. Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter formigenes. J. Urol. 2001, 166, 1487–1491, doi:10.1016/S0022-5347(05)65817-X.
[47]  Justice, K.E. Oxalate digestability in Neotoma albigula and Neotoma mexicana. Oecologia 1985, 67, 231–234, doi:10.1007/BF00384290.
[48]  Ruiz, N.; Ward, D.; Saltz, D. Calcium oxalate crystals in leaves of Pancratium sickenbergeri: Constitutive or induced defense? Funct. Ecol. 2002, 16, 99–105, doi:10.1046/j.0269-8463.2001.00594.x.
[49]  Palgi, N.; Ronen, Z.; Pinshow, B. Oxalate balance in fat sand rats feeding on high and low calcium diets. J. Comp. Phys. B 2008, 178, 617–622, doi:10.1007/s00360-008-0252-1.
[50]  Noonan, S.C.; Savage, G.P. Oxalate content of foods and its effect on humans. Asia Pacific J. Clin. Nutr. 1999, 8, 64–74, doi:10.1046/j.1440-6047.1999.00038.x.
[51]  Contreras-Padilla, M.; Pérez-Torrero, E.; Hernández-Urbiola, M.I.; Hernández-Quevedo, G.; del Real, A.; Rivera-Mu?oz, E.M.; Rodríguez-García, M.E. Evaluation of oxalates and calcium in nopal pads (Opuntia ficus-indica var. redonda) at different maturity stages. J. Food Comp. Anal. 2011, 24, 38–43, doi:10.1016/j.jfca.2010.03.028.
[52]  Hatch, M.; Cornelius, J.; Allison, M.; Sidhu, H.; Peck, A.; Freel, R.W. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006, 69, 691–698, doi:10.1038/
[53]  Caspary, W.F.; T?nissen, J.; Lankisch, P.G. “Enteral” hyperoxaluria: Effect of cholestyramine, calcium, neomycin, and bile acids on intestinal oxalate absorption in man. Acta Hepatogastroenterol (Stuttg) 1977, 24, 193–200.
[54]  Hanes, D.A.; Weaver, C.M.; Heaney, R.P.; Wastney, M. Absorption of calcium oxalate does not require dissociation in rats. J. Nutr. 1999, 129, 170–173.
[55]  Hatch, M.; Gjymishka, A.; Salido, E.C.; Allison, M.J.; Freel, R.W. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, 461–469, doi:10.1152/ajpgi.00434.2010.
[56]  Hatch, M.; Freel, R.W. The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin. Nephrol. 2008, 28, 143–151, doi:10.1016/j.semnephrol.2008.01.007.
[57]  K?nigsberger, E.; K?nigsberger, L.C. Thermodynamic modeling of crystal deposition in humans. Pure Appl. Chem. 2001, 73, 785–797, doi:10.1351/pac200173050785.
[58]  Allison, M.J.; Littledike, E.T.; James, L.F. Changes in ruminal oxalate degradation rates associated with adaptation to oxalate ingestion. J. Anim. Sci. 1977, 53, 1173–1179.
[59]  Daniel, S.L.; Hartman, P.A.; Allison, M.J. Microbial degradation of oxalate in the gastrointestinal tract of rats. Appl. Environ. Microbiol. 1987, 53, 1793–1797.
[60]  Allison, M.J.; Dawson, K.A.; Mayberry, W.R.; Foss, J.G. Oxalobacter formigene gen. nov., sp. nov.: Oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch. Microbiol. 1985, 141, 1–7.
[61]  Ito, H.; Miura, N.; Masai, M.; Yamamoto, K.; Hara, T. Reduction of oxalate content of foods by the oxalate degrading bacterium, Eubacterium lentum WYH-1. Int. J. Urol. 1996, 3, 31–34, doi:10.1111/j.1442-2042.1996.tb00626.x.
[62]  Hokama, S.; Honma, Y.; Toma, C.; Ogawa, Y. Oxalate-degrading Enterococcus faecalis. Microbiol. Immunol. 2000, 44, 235–240, doi:10.1111/j.1348-0421.2000.tb02489.x.
[63]  Campieri, C.; Campieri, M.; Bertuzzi, V.; Swennen, E.; Matteuzzi, D.; Stefoni, S.; Pirovano, F.; Centi, C.; Ulisse, S.; Famularo, G.; et al. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 2001, 60, 1097–1105, doi:10.1046/j.1523-1755.2001.0600031097.x.
[64]  Miller, A.W.; Kohl, K.D.; Dearing, M.D. Microenvironments of the gut harbor distinct consortia of oxalate-degrading bacteria. Appl. Environ. Microbiol. 2013. submitted.
[65]  Allison, M.J.; Cook, H.M.; Milne, D.B.; Gallagher, S.; Clayman, R.V. Oxalate degradation by gastrointestinal bacteria from humans. J. Nut. 1986, 116, 455–460.
[66]  Kageyama, A.; Benno, Y.; Nakase, T. Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 1999, 49, 1725–1732, doi:10.1099/00207713-49-4-1725.
[67]  Ren, Z.; Pan, C.; Jiang, L.; Wu, C.; Liu, Y.; Zhong, Z.; Ran, L.; Ren, F.; Chen, X.; Wang, Y.; Zhu, Y.; Huang, K. Oxalate-degrading capabilities of lactic acid bacteria in canine feces. Vet. Microbiol. 2011, 152, 368–373, doi:10.1016/j.vetmic.2011.05.003.
[68]  Hokama, S.; Toma, C.; Iwanaga, M.; Morozumi, M.; Sagaya, K.; Ogawa, Y. Oxalate-degrading Providencia rettgeri isolated from human stools. Int. J. Urol. 2005, 12, 533–538, doi:10.1111/j.1442-2042.2005.01083.x.
[69]  Kwak, C.; Jeong, B.C.; Ku, J.H.; Kim, H.H.; Lee, J.J.; Huh, C.S.; Baek, Y.J.; Lee, S.E. Prevention of nephrolithiasis by Lactobacillus in stone-forming rats: A preliminary study. Urol. Res. 2006, 34, 265–270, doi:10.1007/s00240-006-0054-4.
[70]  Turroni, S.; Vitali, B.; Bendazzoli, C.; Candela, M.; Gotti, R.; Federici, F.; Pirovano, F.; Brigidi, P. Oxalate consumption by Lactobacilli: Evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. J. Appl. Microbiol. 2007, 103, 1600–1607, doi:10.1111/j.1365-2672.2007.03388.x.
[71]  Ferraz, R.R.N.; Marques, N.C.; Froeder, L.; Menon, V.B.; Siliano, P.R.; Baxmann, A.C.; Heilberg, I.P. Effects of Lactobacillus casei and Bifidobacterium breve on urinary oxalate excretion in nephrolithiasis patients. Urol. Res. 1999, 37, 95–100.
[72]  Weese, J.S.; Weese, H.E.; Yuricek, L.; Rousseau, J. Oxalate degradation by intestinal lactic acid bacteria in dogs and cats. Vet. Microbiol. 2004, 101, 161–166, doi:10.1016/j.vetmic.2004.03.017.
[73]  Ruan, Z.S.; Anantharam, V.; Crawford, I.T.; Ambudkar, S.V.; Rhee, S.Y.; Allison, M.J.; Maloney, P.C. Identification, purification, and reconstitution of OxlT, the oxalate: formate antiporter protein of Oxalobacter formigenes. J. Biol. Chem. 1992, 267, 10537–10543.
[74]  Baetz, A.L.; Allison, M.J. Purification and characterization of oxalyl-coenzyme A decarboxylase from Oxalobacter formigenes. J. Bacteriol. 1989, 171, 2605–2608.
[75]  Baetz, A.L.; Allison, M.J. Purification and characterization of formyl-coenzyme A transferase from Oxalobacter formigenes. J. Bacteriol. 1990, 172, 3537–3540.
[76]  Lung, H.Y.; Cornelius, J.; Peck, A.B. Cloning and expression of the oxalyl-CoA decarboxylase gene from the bacterium, Oxalobacter formigenes: Prospects for gene therapy to control Ca-oxalate kidney stone formation. Am. J. Kidney Dis. 1991, 17, 381–385.
[77]  Sidhu, H.; Enatska, L.; Ogden, S.; Williams, W.N.; Allison, M.J.; Peck, A.B. Evaluating children in the Ukraine for colonization with the intestinal bacterium Oxalobacter formigenes, using a polymerase chain reactor-based detection system. Mol. Diagn. 1997, 2, 89–97, doi:10.1016/S1084-8592(97)80015-X.
[78]  Turroni, S.; Bendazzoli, C.; Dipalo, S.C.F.; Candela, M.; Vitali, B.; Gotti, R.; Brigidi, P. Oxalate-degrading activity in Bifidobacterium animalis subsp. lactis: Impact of acidic conditions on the transcriptional levels of the oxalyl-CoA decarboxylase and formyl-CoA transferase genes. Appl. Environ. Microbiol. 2010, 76, 5609–5620.
[79]  Ley, R.E.; Lozupone, C.; Hamady, M.; Knight, R.; Gordon, J.I. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 2008, 6, 776–788, doi:10.1038/nrmicro1978.
[80]  Karasov, W.H.; Martinez del Rio, C. Physiological Ecology; Princeton University Press: Princeton, NJ, USA, 2007.
[81]  Hook, S.E.; Steele, M.A.; Northwood, K.S.; Dijkstra, J.; France, J.; Wright, A.D.G.; McBride, B.W. Impact of subacute ruminal acidosis adaptation and recovery on the density and diversity of bacteria in the rumen of cows. FEMS Microbiol. Ecol. 2011, 78, 275–284, doi:10.1111/j.1574-6941.2011.01154.x.
[82]  Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestines. Cell 2006, 124, 837–848, doi:10.1016/j.cell.2006.02.017.
[83]  Whitman, W.B.; Coleman, D.C.; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95, 6578–6583, doi:10.1073/pnas.95.12.6578.
[84]  Azcarate-Peril, M.A.; Bruno-Bárcena, J.M.; Hassan, H.M.; Klaenhammer, T.R. Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-coA transferase genes from Lactobacillus acidophilus. Appl. Environ. Microbiol. 2006, 72, 1891–1899, doi:10.1128/AEM.72.3.1891-1899.2006.
[85]  Kuhner, C.H.; Hartman, P.A.; Allison, M.J. Generation of a proton motive force by the anaerobic oxalate-degrading Oxalobacter formigenes. Appl. Environ. Microbiol. 1996, 62, 2494–2500.
[86]  Shirley, E.K.; Schmidt-Nielsen, K. Oxalate metabolism in the pack rat, sand rat, hamster, and white rat. J. Nutr. 1967, 91, 496–502.
[87]  Knight, J.; Deora, R.; Assimos, D.G.; Holmes, R.P. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urol. Res. 2013, 41, 187–196.
[88]  Belenguer, A.; Ben Bati, M.; Hervás, G.; Toral, P.G.; Yá?ez-Ruiz, D.R.; Frutos, P. Impact of oxalic acid on rumen function and bacterial community in sheep. Animal 2013, 7, 940–947, doi:10.1017/S1751731112002455.
[89]  Allison, M.J.; Cook, H.M. Oxalate degradation by microbes of the large bowel of herbivores: The effect of dietary oxalate. Science 1981, 212, 675–676.
[90]  Duncan, A.J.; Frutos, P.; Young, S.A. Rates of oxalate degradation in the rumen of sheep and goats in response to different levels of oxalic acid administration. Anim. Sci. 1997, 65, 451–455, doi:10.1017/S135772980000864X.
[91]  Nicholson, J.K.; Holmes, E.; Wilson, I.D. Gut microorganisms, mammalian metabolism, and personalized health care. Nat. Rev. Microbiol. 2005, 3, 431–438, doi:10.1038/nrmicro1152.
[92]  Lieske, J.C.; Tremaine, W.J.; de Simone, C.; O’Connor, H.M.; Li, X.; Bergstralh, E.J.; Goldfarb, D.S. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 2010, 78, 1178–1185, doi:10.1038/ki.2010.310.
[93]  Duncan, S.H.; Richardson, A.J.; Kaul, P.; Homes, R.P.; Allison, M.J.; Stewart, C.S. Oxalobacter formigenes and its potential role in human health. Appl. Environ. Microbiol. 2002, 68, 3841–3847, doi:10.1128/AEM.68.8.3841-3847.2002.
[94]  Kelly, J.P.; Curhan, G.C.; Cave, D.R.; Anderson, T.E.; Kaufman, D.W. Factors related to colonization with Oxalobacter formigenes in U.S. adults. J. Endourol. 2011, 25, 673–679, doi:10.1089/end.2010.0462.
[95]  Kharlamb, V.; Schelker, J.; Francois, F.; Jiang, J.; Holmes, R.P.; Goldfarb, D.S. Oral antibiotic treatment of Helicobacter pylori leads to persistently reduced intestinal colonization rates with Oxalobacter formigenes. J. Endourol. 2011, 25, 1781–1785, doi:10.1089/end.2011.0243.
[96]  Lange, J.N.; Wood, K.D.; Wong, H.; Otto, R.; Mufarrij, P.W.; Knight, J.; Akpinar, H.; Holmes, R.P.; Assimos, D.G. Sensitivity of human strains of Oxalobacter formigenes to commonly prescribed antibiotics. Urology 2012, 79, 1286–1289, doi:10.1016/j.urology.2011.11.017.
[97]  Sidhu, H.; Hoppe, B.; Hesse, A.; Tenbrock, K.; Bromme, S.; Rietschel, E.; Peck, A.B. Absence of Oxalobacter formigenes in cystic fibrosis patients: A risk factor for hyperoxaluria. Lancet 1998, 352, 1026–1029, doi:10.1016/S0140-6736(98)03038-4.
[98]  Lieske, J.C.; Goldfarb, D.S.; de Simone, C.; Regnier, C. Use of a probiotic to decrease enteric hyperoxaluria. Kidney Int. 2005, 68, 1244–1249, doi:10.1111/j.1523-1755.2005.00520.x.
[99]  Palgi, N.; Taliesnik, H.; Pinshow, B. Elimination of oxalate by fat sand rats (Psammomys obesus): Wild and laboratory-bred animals compared. Comp. Biochem. Phys. A 2008, 149, 197–202, doi:10.1016/j.cbpa.2007.11.010.
[100]  Borody, T.J.; Eloise, F.; Warren, S.M.; Leis, R.S.; Ori, A.; Siarakas, S. Bacteriotherapy using fecal flora: Toying with human motions. J. Clin. Gastroenterol. 2004, 38, 475–483.
[101]  Huebner, E.; Surawicz, C.M. Probiotics in the prevention and treatment of gastrointestinal infections. Gastroenterol. Clin. North Am. 2006, 35, 355–365, doi:10.1016/j.gtc.2006.03.005.
[102]  Gough, E.; Shaikh, H.; Manges, A.R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 2011, 53, 994–1002, doi:10.1093/cid/cir632.
[103]  Reid, G.; Younes, J.A.; van der Mei, H.C.; Gloor, G.B.; Knight, R.; Busscher, H.J. Microbiota restoration: Natural and supplemented recovery of human microbial communities. Nat. Rev. Microbiol. 2011, 9, 27–38, doi:10.1038/nrmicro2473.
[104]  Rawls, J.F.; Mahowald, M.A.; Ley, R.E.; Gordon, J.I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 2006, 127, 423–433, doi:10.1016/j.cell.2006.08.043.
[105]  Pang, X.; Hua, X.; Yang, Q.; Ding, D.; Che, C.; Cui, L.; Jia, W.; Buchell, P.; Zhao, L. Inter-species transplantation of gut microbiota from humans to pigs. ISME J. 2007, 1, 156–162, doi:10.1038/ismej.2007.23.
[106]  Hooper, L.V.; Midtvedt, T.; Gordon, J.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Ann. Rev. Nutr. 2002, 22, 283–307, doi:10.1146/annurev.nutr.22.011602.092259.
[107]  Smillie, C.S.; Smith, M.B.; Friedman, J.; Cordero, O.T.; David, L.A.; Alm, E.J. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011, 480, 241–244, doi:10.1038/nature10571.


comments powered by Disqus

Contact Us


微信:OALib Journal