All Title Author
Keywords Abstract

Nutrients  2013 

The Effects of Caffeinated “Energy Shots” on Time Trial Performance

DOI: 10.3390/nu5062062

Keywords: time trial, caffeine, taurine, yerba maté, distance running

Full-Text   Cite this paper   Add to My Lib

Abstract:

An emerging trend in sports nutrition is the consumption of energy drinks and “energy shots”. Energy shots may prove to be a viable pre-competition supplement for runners. Six male runners (mean ± SD age and VO 2max: 22.5 ± 1.8 years and 69.1 ± 5.7 mL·kg ?1·min ?1) completed three trials [placebo (PLA; 0 mg caffeine), Guayakí Yerba Maté Organic Energy Shot? (YM; 140 mg caffeine), or Red Bull Energy Shot? (RB; 80 mg caffeine)]. Treatments were ingested following a randomized, placebo-controlled crossover design. Participants ran a five kilometer time trial on a treadmill. No differences ( p > 0.05) in performance were detected with RB (17.55 ± 1.01 min) or YM ingestion (17.86 ± 1.59 min) compared to placebo (17.44 ± 1.25 min). Overall, energy shot ingestion did not improve time-trial running performance in trained runners.

References

[1]  Desbrow, B.; Leveritt, M. Well-trained endurance athletes’ knowledge, insight, and experience of caffeine use. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 328–339.
[2]  Vandenbogaerde, T.J.; Hopkins, W.G. Monitoring acute effects on athletic performance with mixed linear modeling. Med. Sci. Sports Exerc. 2010, 42, 1339–1344.
[3]  Cox, G.R.; Desbrow, B.; Montgomery, P.G.; Anderson, M.E.; Bruce, C.R.; Macrides, T.A.; Martin, D.T.; Moquin, A.; Roberts, A.; Hawley, J.A.; et al. Effect of different protocols of caffeine intake on metabolism and endurance performance. J. Appl. Physiol. 2002, 93, 990–999.
[4]  Jenkins, N.T.; Trilk, J.L.; Singhal, A.; O’Connor, P.J.; Cureton, K.J. Ergogenic effects of low doses of caffeine on cycling performance. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 328–342.
[5]  Bridge, C.A.; Jones, M.A. The effect of caffeine ingestion on 8-km run performance in a field setting. J. Sports Sci. 2006, 24, 433–439, doi:10.1080/02640410500231496.
[6]  Woolsey, C.; Waigandt, A.; Beck, N.C. Athletes and energy drinks: Reported risk-taking and consequences from the combined use of alcohol and energy drinks. J. Appl. Sports Psychol. 2010, 22, 65–71, doi:10.1080/10413200903403224.
[7]  Ivy, J.L.; Kammer, L.; Ding, Z.; Wang, B.; Bernard, J.R.; Liao, Y.-H.; Hwang, J. Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 61–78.
[8]  Astorino, T.A.; Matera, A.J.; Basinger, J.; Evans, M.; Schurman, T.; Marquez, R. Effects of Red Bull energy drink on repeated sprint performance in women athletes. Amino Acids 2012, 42, 1803–1808.
[9]  Peters, H.P.; van Schelven, F.W.; Verstappen, P.A.; de Boer, R.W.; Bol, E.; Erich, W.B.; van der Togt, C.R.; de Vries, W.R. Gastrointestinal problems as a function of carbohydrate supplements and mode of exercise. Med. Sci. Sports Exerc. 1993, 25, 1211–1224.
[10]  Desbrow, B.; Hughes, R.; Leveritt, M.; Scheelings, P. An examination of consumer exposure to caffeine from retail coffee outlets. Food Chem. Toxicol. 2007, 45, 1588–1592, doi:10.1016/j.fct.2007.02.020.
[11]  USDA National Nutrient Database for Standard Reference, Release 25. Available online: http://www.ars.usda.gov/ba/bhnrc/ndl (accessed on 30 September 2011).
[12]  Siri, W.E. Gross composition of the human body. Adv. Biol. Med. Phys. 1956, 4, 239–280.
[13]  Heyward, V.H. Advanced Fitness Assessment and Exercise Prescription, 5th ed.; Human Kinetics: Champaign, IL, USA, 2006.
[14]  Jackson, A.S.; Pollock, M.L. Generalized equations for predicting body density of men. Br. J. Nutr. 1978, 40, 497–504.
[15]  Smith, D.; Telford, R.; Peltola, E.; Tumilty, D. Protocols for the Physiological Assesment of High-Performance Runners. In Physiological Test for Elite Athletes; Gore, C.J., Ed.; Human Kinetics: Champaign, IL, USA, 2000.
[16]  Robergs, R.A.; Dwyer, D.; Astorino, T.A. Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Med. 2010, 40, 95–111, doi:10.2165/11319670-000000000-00000.
[17]  Heckman, M.A.; Weil, J.; Gonzalez de Mejia, E. Caffeine (1,3,7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci. 2010, 75, R77–R87, doi:10.1111/j.1750-3841.2010.01561.x.
[18]  Heck, C.I.; de Mejia, E.G. Yerba Mate Tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological consideration. J. Food Sci. 2007, 72, R138–R151, doi:10.1111/j.1750-3841.2007.00535.x.
[19]  Desbrow, B.; Barrett, C.M.; Minahan, C.L.; Grant, G.D.; Leveritt, M.D. Caffeine, cycling performance, and exogenous CHO oxidation: A dose-response study. Med. Sci. Sports Exerc. 2009, 41, 1744–1751, doi:10.1249/MSS.0b013e3181a16cf7.
[20]  Borg, G.A.V. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381.
[21]  Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13.
[22]  Hopkins, W.G. Competitive performance of elite track-and-field athletes: Variability and smallest worthwhile enhancements. Sports Sci. 2005, 9, 17–20.
[23]  Laursen, P.B.; Francis, G.T.; Abbiss, C.R.; Newton, M.J.; Nosaka, K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med. Sci. Sports Exerc. 2007, 39, 1374–1379, doi:10.1249/mss.0b013e31806010f5.
[24]  Hopkins, W.G. A spreadsheet for deriving a confidence interval, mechanistic inference, and clinical inference from a p-value. Sports Sci. 2007, 11, 16–20.
[25]  Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of caffeine on sport-specific endurance performance: A systematic review. J. Strength Cond. Res. 2009, 23, 315–324, doi:10.1519/JSC.0b013e31818b979a.
[26]  O’Rourke, M.P.; O’Brien, B.J.; Knez, W.L.; Paton, C.D. Caffeine has a small effect on 5-km running performance in well-trained and recreational runners. J. Sci. Med. Sport 2008, 11, 231–233, doi:10.1016/j.jsams.2006.12.118.
[27]  Paton, C.D.; Lowe, T.; Irvine, A. Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur. J. Appl. Phys. 2010, 110, 1243–1250, doi:10.1007/s00421-010-1620-6.
[28]  Cureton, K.J.; Warren, G.L.; Millard-Stafford, M.L.; Wingo, J.E.; Trilk, J.L.; Buyckx, M. Caffeinated sports drink: Ergogenic effects and potential mechanisms. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 35–55.
[29]  Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404.
[30]  Motl, R.W.; O’Connor, P.J.; Dishman, R.K. Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. J. Pain 2003, 4, 316–321.
[31]  Plaskett, C.J.; Cafarelli, E. Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions. J. Appl. Physiol. 2001, 91, 1535–1544.
[32]  Doherty, M.; Smith, P.M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78.
[33]  Wiles, J.D.; Bird, S.R.; Hopkins, J.; Riley, M. Effect of caffeinated coffee on running speed, respiratory factors, blood lactate and perceived exertion during 1500-m treadmill running. Br. J. Sports Med. 1992, 26, 116–120, doi:10.1136/bjsm.26.2.116.
[34]  Beverages Direct. Available online: http://www.beveragesdirect.com/default.aspx (accessed on 30 August 2010).

Full-Text

comments powered by Disqus