全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Marine Drugs  2013 

Trypanocidal Activity of Marine Natural Products

DOI: 10.3390/md11104058

Keywords: human African trypanosomiasis, sleeping sickness, chagas disease, marine natural products, drug discovery

Full-Text   Cite this paper   Add to My Lib

Abstract:

Marine natural products are a diverse, unique collection of compounds with immense therapeutic potential. This has resulted in these molecules being evaluated for a number of different disease indications including the neglected protozoan diseases, human African trypanosomiasis and Chagas disease, for which very few drugs are currently available. This article will review the marine natural products for which activity against the kinetoplastid parasites; Trypanosoma brucei brucei, T.b. rhodesiense and T. cruzi has been reported. As it is important to know the selectivity of a compound when evaluating its trypanocidal activity, this article will only cover molecules which have simultaneously been tested for cytotoxicity against a mammalian cell line. Compounds have been grouped according to their chemical structure and representative examples from each class were selected for detailed discussion.

References

[1]  Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012, 380, 2095–2128, doi:10.1016/S0140-6736(12)61728-0.
[2]  Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012, 380, 2197–2223, doi:10.1016/S0140-6736(12)61689-4.
[3]  Pepin, J.; Meda, H.A. The epidemiology and control of human African trypanosomiasis. Adv. Parasitol. 2001, 49, 71–132, doi:10.1016/S0065-308X(01)49038-5.
[4]  Zeledon, R.; Rabinovich, J.E. Chagas disease: An ecological appraisal with special emphasis on its insect vectors. Annu. Rev. Entomol. 1981, 26, 101–133, doi:10.1146/annurev.en.26.010181.000533.
[5]  Simarro, P.P.; Diarra, A.; Ruiz Postigo, J.A.; Franco, J.R.; Jannin, J.G. The human African trypanosomiasis control and surveillance programme of the World Health Organization 2000–2009: The way forward. PLoS Negl. Trop. Dis. 2011, 5, e1007, doi:10.1371/journal.pntd.0001007.
[6]  Moncayo, A.; Silveira, A.C. Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Mem. Inst. Oswaldo Cruz 2009, 104 (Suppl. 1), 17–30.
[7]  Apted, F.I.C.; Mulligan, H.W. Clinical manifestations and diagnosis of sleeping sickness. In The African Trypanosomiases; George Allen and Unwin LTD: London, UK, 1970; pp. 661–683.
[8]  Atouguia, J.M.; Kennedy, P.G.E.; Davis, L.E. Neurological aspects of human African trypanosomiasis. In Infectious Diseases of the Nervous System; Davis, L.E., Kennedy, P.G.E., Eds.; Butterworth-Heinemann: Oxford, UK, 2000; pp. 321–372.
[9]  Galfand, M. Transitory neurological signs in sleeping sickness. Trans. R. Soc. Trop. Med. Hyg. 1947, 41, 255–258, doi:10.1016/S0035-9203(47)80009-4.
[10]  Lundkvist, G.B.; Kristensson, K.; Bentivoglio, M. Why trypanosomes cause sleeping sickness. Physiology 2004, 19, 198–206, doi:10.1152/physiol.00006.2004.
[11]  Human African trypanosomiasis (sleeping sickness)World Health Organisation Fact Sheet 259. Available online: http://www.who.int/mediacentre/factsheets/fs259/en/ (accessed on 9 September 2013).
[12]  Rassi, A., Jr.; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet 2010, 375, 1388–1402, doi:10.1016/S0140-6736(10)60061-X.
[13]  Rassi, A.; Rezende, J.M.; Luquetti, A.O. Clinical phases and forms of Chagas disease. In American Trypanosomiasis (Chagas Disease). One Hundred Years of Research, 1st ed.; Telleria, J., Tibayrenc, M., Eds.; Elsevier: Burlington, MA, USA, 2010; pp. 709–741.
[14]  Munoz-Saravia, S.G.; Haberland, A.; Wallukat, G.; Schimke, I. Chronic Chagas heart disease: A disease on its way to becoming a worldwide health problem: Epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine. Heart Fail. Rev. 2012, 17, 45–64, doi:10.1007/s10741-010-9211-5.
[15]  Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet 2010, 375, 148–159, doi:10.1016/S0140-6736(09)60829-1.
[16]  Pepin, J.; Milord, F. The treatment of human African trypanosomiasis. Adv. Parasitol. 1994, 33, 1–47, doi:10.1016/S0065-308X(08)60410-8.
[17]  Milord, F.; Pepin, J.; Loko, L.; Ethier, L.; Mpia, B. Efficacy and toxicity of eflornithine for treatment of Trypanosoma brucei gambiense sleeping sickness. Lancet 1992, 340, 652–655, doi:10.1016/0140-6736(92)92180-N.
[18]  Priotto, G.; Kasparian, S.; Ngouama, D.; Ghorashian, S.; Arnold, U.; Ghabri, S.; Karunakara, U. Nifurtimox-eflornithine combination therapy for second-stage Trypanosoma brucei gambiense sleeping sickness: A randomized clinical trial in Congo. Clin. Infect. Dis. 2007, 45, 1435–1442, doi:10.1086/522982.
[19]  Priotto, G.; Kasparian, S.; Mutombo, W.; Ngouama, D.; Ghorashian, S.; Arnold, U.; Ghabri, S.; Baudin, E.; Buard, V.; Kazadi-Kyanza, S.; et al. Nifurtimox-eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: A multicentre, randomised, phase III, non-inferiority trial. Lancet 2009, 374, 56–64, doi:10.1016/S0140-6736(09)61117-X.
[20]  Apt, W. Current and developing therapeutic agents in the treatment of Chagas disease. Drug Des. Devel. Ther. 2010, 4, 243–253, doi:10.2147/DDDT.S8338.
[21]  Castro, J.A.; Diaz de Toranzo, E.G. Toxic effects of nifurtimox and benznidazole, two drugs used against American trypanosomiasis (Chagas disease). Biomed. Environ. Sci. 1988, 1, 19–33.
[22]  Jackson, Y.; Alirol, E.; Getaz, L.; Wolff, H.; Combescure, C.; Chappuis, F. Tolerance and safety of nifurtimox in patients with chronic Chagas disease. Clin. Infect. Dis. 2010, 51, 69–75, doi:10.1086/656917.
[23]  Hasslocher-Moreno, A.M.; Do Brasil, P.E.; De Sousa, A.S.; Xavier, S.S.; Chambela, M.C.; Sperandio Da Silva, G.M. Safety of benznidazole use in the treatment of chronic Chagas disease. J. Antimicrob. Chemother. 2012, 67, 1261–1266, doi:10.1093/jac/dks027.
[24]  Kaiser, M.; Bray, M.A.; Cal, M.; Bourdin Trunz, B.; Torreele, E.; Brun, R. Antitrypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness. Antimicrob. Agents Chemother. 2011, 55, 5602–5608, doi:10.1128/AAC.00246-11.
[25]  Jacobs, R.T.; Nare, B.; Wring, S.A.; Orr, M.D.; Chen, D.; Sligar, J.M.; Jenks, M.X.; Noe, R.A.; Bowling, T.S.; Mercer, L.T.; et al. SCYX-7158, an orally-active benzoxaborole for the treatment of stage 2 human African trypanosomiasis. PLoS Negl. Trop. Dis. 2011, 5, e1151, doi:10.1371/journal.pntd.0001151.
[26]  Jacobs, R.T.; Nare, B.; Phillips, M.A. State of the art in African trypanosome drug discovery. Curr. Top. Med. Chem. 2011, 11, 1255–1274, doi:10.2174/156802611795429167.
[27]  Barker, R.H., Jr.; Liu, H.; Hirth, B.; Celatka, C.A.; Fitzpatrick, R.; Xiang, Y.; Willert, E.K.; Phillips, M.A.; Kaiser, M.; Bacchi, C.J.; et al. Novel S-adenosylmethionine decarboxylase inhibitors for the treatment of human African trypanosomiasis. Antimicrob. Agents Chemother. 2009, 53, 2052–2058, doi:10.1128/AAC.01674-08.
[28]  Bacchi, C.J.; Barker, R.H.; Rodriguez, A.; Hirth, B.; Rattendi, D.; Yarlett, N.; Hendrick, C.L.; Sybertz, E. Trypanocidal activity of 8-methyl-5′-[(Z)-4-aminobut-2-enyl](methylamino)adenosine (Genz-644131), an adenosylmethionine decarboxylase inhibitor. Antimicrob. Agents Chemother. 2009, 53, 3269–3272, doi:10.1128/AAC.00076-09.
[29]  Price, H.P.; Menon, M.R.; Panethymitaki, C.; Goulding, D.; McKean, P.G.; Smith, D.F. Myristoyl-CoA: Protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J. Biol. Chem. 2003, 278, 7206–7214.
[30]  Frearson, J.A.; Brand, S.; McElroy, S.P.; Cleghorn, L.A.T.; Smid, O.; Stojanovski, L.; Price, H.P.; Guther, M.L.S.; Torrie, L.S.; Robinson, D.A.; et al. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 2010, 464, 728–732, doi:10.1038/nature08893.
[31]  Wyllie, S.; Oza, S.L.; Patterson, S.; Spinks, D.; Thompson, S.; Fairlamb, A.H. Dissecting the essentiality of the bifunctional trypanothione synthetase-amidase in Trypanosoma brucei using chemical and genetic methods. Mol. Microbiol. 2009, 74, 529–540, doi:10.1111/j.1365-2958.2009.06761.x.
[32]  Clayton, J. Chagas disease: Pushing through the pipeline. Nature 2010, 465, S12–S15, doi:10.1038/nature09224.
[33]  A Study of the Use of Oral Posaconazole (POS) in the Treatment of Asymptomatic Chronic Chagas Disease. Clinical Trials, Available online: http://clinicaltrials.gov/show/NCT01377480 (accessed on 23 September 2013).
[34]  Chen, C.K.; Leung, S.S.; Guilbert, C.; Jacobson, M.P.; McKerrow, J.H.; Podust, L.M. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl. Trop. Dis. 2010, 4, e651, doi:10.1371/journal.pntd.0000651.
[35]  Gunatilleke, S.S.; Calvet, C.M.; Johnston, J.B.; Chen, C.K.; Erenburg, G.; Gut, J.; Engel, J.C.; Ang, K.K.; Mulvaney, J.; Chen, S.; et al. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51. PLoS Negl. Trop. Dis. 2012, 6, e1736, doi:10.1371/journal.pntd.0001736.
[36]  Lepesheva, G.I.; Villalta, F.; Waterman, M.R. Targeting Trypanosoma cruzi sterol 14alpha-demethylase (CYP51). Adv. Parasitol. 2011, 75, 65–87, doi:10.1016/B978-0-12-385863-4.00004-6.
[37]  Soeiro Mde, N.; de Souza, E.M.; da Silva, C.F.; Batista Dda, G.; Batista, M.M.; Pavao, B.P.; Araujo, J.S.; Aiub, C.A.; da Silva, P.B.; Lionel, J.; et al. In vitro and in vivo studies of the antiparasitic activity of sterol 14alpha-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi. Antimicrob. Agents Chemother. 2013, 57, 4151–4163, doi:10.1128/AAC.00070-13.
[38]  Buckner, F.S. Sterol 14-demethylase inhibitors for Trypanosoma cruzi infections. Adv. Exp. Med. Biol. 2008, 625, 61–80, doi:10.1007/978-0-387-77570-8_6.
[39]  Clayton, J. The promise of T. cruzi genomics. Nature 2010, 465, S16–S17, doi:10.1038/nature09225.
[40]  Lisvane Silva, P.; Mantilla, B.S.; Barison, M.J.; Wrenger, C.; Silber, A.M. The uniqueness of the Trypanosoma cruzi mitochondrion: Opportunities to identify new drug target for the treatment of Chagas disease. Curr. Pharm. Des. 2011, 17, 2074–2099, doi:10.2174/138161211796904786.
[41]  Soeiro, M.N.; de Castro, S.L. Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets 2009, 13, 105–121, doi:10.1517/14728220802623881.
[42]  Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335, doi:10.1021/np200906s.
[43]  Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2013, 30, 237–323, doi:10.1039/c2np20112g.
[44]  Bergmann, W.; Feeney, R.J. The isolation of a new thymine pentoside from sponges. J. Am. Chem. Soc. 1950, 72, 2809–2810, doi:10.1021/ja01162a543.
[45]  Swift, A.N. Contributions to the study of marine products. Component acids of lipids of sponges. J. Org. Chem. 1951, 16, 1206–1221, doi:10.1021/jo50002a005.
[46]  O’Day, D.M.; Poirier, R.H.; Jones, D.B.; Elliott, J.H. Vidarabine therapy of complicated Herpes simplex keratitis. Am. J. Ophthalmol. 1976, 81, 642–649.
[47]  Pavan-Langston, D.; Hess, F. Ocular and systemic antiviral activity of vidarabine. Compr. Ther. 1977, 3, 42–48.
[48]  Mori, J.; Tsubokura, M.; Kami, M. Cytarabine dose for acute myeloid leukemia. N. Engl. J. Med. 2011, 364, 2166–2167, doi:10.1056/NEJMc1104343.
[49]  Fox, B.W. Pharmacology and chemistry of some inhibitors of herpes replication. J. Antimicrob. Chemother. 1977, 3, 23–32, doi:10.1093/jac/3.suppl_A.23.
[50]  Gedik, C.M.; Collins, A.R. The mode of action of 1-beta-d-arabinofuranosylcytosine in inhibiting DNA repair; New evidence using a sensitive assay for repair DNA synthesis and ligation in permeable cells. Mutat. Res. 1991, 254, 231–237, doi:10.1016/0921-8777(91)90061-S.
[51]  Olivera, B.M.; Gray, W.R.; Zeikus, R.; McIntosh, J.M.; Varga, J.; Rivier, J.; De Santos, V.; Cruz, L.J. Peptide neurotoxins from fish-hunting cone snails. Science 1985, 230, 1338–1343.
[52]  Miljanich, G.P. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 2004, 11, 3029–3040, doi:10.2174/0929867043363884.
[53]  Lovaza Drug DetailsFood and Drug Administration Approved Products. Available online: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails (accessed on 18 September 2013).
[54]  Vascepa. Food and Drug Administration Orange Book: Approved drug products with therapeutic equivalence evaluations. Available online: http://www.accessdata.fda.gov/scripts/cder/ob/docs/obdetail.cfm?Appl_No=202057&TABLE1=OB_Rx (accessed on 18 September 2013).
[55]  Strobel, C.; Jahreis, G.; Kuhnt, K. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products. Lipids Health Dis. 2012, 11, 144, doi:10.1186/1476-511X-11-144.
[56]  Nestel, P.J.; Connor, W.E.; Reardon, M.F.; Connor, S.; Wong, S.; Boston, R. Suppression by diets rich in fish oil of very low-density lipoprotein production in man. J. Clin. Invest. 1984, 74, 82–89, doi:10.1172/JCI111422.
[57]  Sanders, T.A.B.; Sullivan, D.R.; Reeve, J.; Thompson, G.R. Triglyceride-lowering effect of marine polyunsaturates in patients with hypertriglyceridemia. Arteriosclerosis 1985, 5, 459–465, doi:10.1161/01.ATV.5.5.459.
[58]  Bordin, P.; Bodamer, O.A.F.; Venkatesan, S.; Gray, R.M.; Bannister, P.A.; Halliday, D. Effects of fish oil supplementation on apolipoprotein B100 production and lipoprotein metabolism in normolipidaemic males. Eur. J. Clin. Nutr. 1998, 52, 104–109.
[59]  Madsen, L.; Rustan, A.C.; Vaagenes, H.; Berge, K.; Dyroy, E.; Berge, R.K. Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. Lipids 1999, 34, 951–963, doi:10.1007/s11745-999-0445-x.
[60]  Davidson, M.H. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am. J. Cardiol. 2006, 98, 27–33, doi:10.1016/j.amjcard.2005.12.024.
[61]  Hirata, Y.; Uemura, D. Halichondrins—Antitumor polyether macrolides from a marine sponge. Pure Appl. Chem. 1986, 58, 701–710, doi:10.1351/pac198658050701.
[62]  Kuznetsov, G.; Towle, M.J.; Cheng, H.S.; Kawamura, T.; TenDyke, K.; Liu, D.; Kishi, Y.; Yu, M.J.; Littlefield, B.A. Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389. Cancer Res. 2004, 64, 5760–5766, doi:10.1158/0008-5472.CAN-04-1169.
[63]  Jordan, M.A.; Kamath, K.; Manna, T.; Okouneva, T.; Miller, H.P.; Davis, C.; Littlefield, B.A.; Wilson, L. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol. Cancer Ther. 2005, 4, 1086–1095, doi:10.1158/1535-7163.MCT-04-0345.
[64]  Dabydeen, D.A.; Burnett, J.C.; Bai, R.L.; Verdier-Pinard, P.; Hickford, S.J.H.; Pettit, G.R.; Blunt, J.W.; Munro, M.H.G.; Gussio, R.; Hamel, E. Comparison of the activities of the truncated halichondrin B analog NSC 707389 (E7389) with those of the parent compound and a proposed binding site on tubulin. Mol. Pharmacol. 2006, 70, 1866–1875, doi:10.1124/mol.106.026641.
[65]  Francisco, J.A.; Cerveny, C.G.; Meyer, D.L.; Mixan, B.J.; Klussman, K.; Chace, D.F.; Rejniak, S.X.; Gordon, K.A.; DeBlanc, R.; Toki, B.E. cAC10-vcMMAE, an anti-CD30–monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003, 102, 1458–1465, doi:10.1182/blood-2003-01-0039.
[66]  Pettit, G.R.; Kamano, Y.; Herald, C.L.; Tuinman, A.A.; Boettner, F.E.; Kizu, H.; Schmidt, J.M.; Baczynskyj, L.; Tomer, K.B.; Bontems, R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J. Am. Chem. Soc. 1987, 109, 6883–6885, doi:10.1021/ja00256a070.
[67]  Deng, C.; Pan, B.; O’Connor, O.A. Brentuximab vedotin. Clin. Cancer Res. 2013, 19, 22–27, doi:10.1158/1078-0432.CCR-12-0290.
[68]  Rinehart, K.L.; Holt, T.G.; Fregeau, N.L.; Stroh, J.G.; Keifer, P.A.; Sun, F.; Li, L.H.; Martin, D.G. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: Potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J. Org. Chem. 1990, 55, 4512–4515, doi:10.1021/jo00302a007.
[69]  Zewail-Foote, M.; Hurley, L.H. Differential rates of reversibility of ecteinascidin 743-DNA covalent adducts from different sequences lead to migration to favored bonding sites. J. Am. Chem. Soc. 2001, 123, 6485–6495, doi:10.1021/ja004023p.
[70]  Takebayashi, Y.; Pourquier, P.; Zimonjic, D.B.; Nakayama, K.; Emmert, S.; Ueda, T.; Urasaki, Y.; Kanzaki, A.; Akiyama, S.; Popescu, N.; et al. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nat. Med. 2001, 7, 961–966, doi:10.1038/91008.
[71]  Soares, D.G.; Escargueil, A.E.; Poindessous, V.; Sarasin, A.; De Gramont, A.; Bonatto, D.; Henriques, J.A.P.; Larsen, A.K. Replication and homologous recombination repair regulate DNA double-strand break formation by the antitumor alkylator ecteinascidin 743. Proc. Natl. Acad. Sci. USA. 2007, 104, 13062–13067, doi:10.1073/pnas.0609877104.
[72]  Herrero, A.B.; Martin-Castellanos, C.; Marco, E.; Gago, F.; Moreno, S. Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin. Cancer Res. 2006, 66, 8155–8162, doi:10.1158/0008-5472.CAN-06-0179.
[73]  Gerwick, W.H.; Moore, B.S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 2012, 19, 85–98, doi:10.1016/j.chembiol.2011.12.014.
[74]  Jones, A.J.; Avery, V.M. Whole-organism high-throughput screening against Trypanosoma brucei brucei. Exp. Opin. Drug Discov. 2013, 8, 495–507.
[75]  Sykes, M.L.; Avery, V.M. Approaches to protozoan drug discovery: Phenotypic screening. J. Med. Chem. 2013. in press.
[76]  Stevens, J.; Brisse, S. Systematics of trypanosomes of medical and veterinary importance. In The Trypanosomiases; Maudlin, I., Holmes, P.H., Miles, M.A., Eds.; CABI Publishing: Trowbridge, UK, 2004; pp. 1–23.
[77]  Pink, R.; Hudson, A.; Mouries, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov. 2005, 4, 727–740, doi:10.1038/nrd1824.
[78]  Chennamaneni, N.K.; Arif, J.; Buckner, F.S.; Gelb, M.H. Isoquinoline-based analogs of the cancer drug clinical candidate tipifarnib as anti-Trypanosoma cruzi agents. Bioorg. Med. Chem. Lett. 2009, 19, 6582–6584, doi:10.1016/j.bmcl.2009.10.029.
[79]  Romanha, A.J.; Castro, S.L.; Soeiro Mde, N.; Lannes-Vieira, J.; Ribeiro, I.; Talvani, A.; Bourdin, B.; Blum, B.; Olivieri, B.; Zani, C.; et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem. Inst. Oswaldo Cruz 2010, 105, 233–238, doi:10.1590/S0074-02762010000200022.
[80]  Ennes-Vidal, V.; Menna-Barreto, R.F.; Santos, A.L.; Branquinha, M.H.; d’Avila-Levy, C.M. Effects of the calpain inhibitor MDL28170 on the clinically relevant forms of Trypanosoma cruzi in vitro. J. Antimicrob. Chemother. 2010, 65, 1395–1398, doi:10.1093/jac/dkq154.
[81]  Buckner, F.S.; Verlinde, C.L.; La Flamme, A.C.; Van Voorhis, W.C. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob. Agents Chemother. 1996, 40, 2592–2597.
[82]  Vickerman, K. Developmental cycles and biology of pathogenic trypanosomes. Br. Med. Bull. 1985, 41, 105–114.
[83]  Da Silva, A.J.; Moser, M. Trypanosomiasis, American (Chagas disease, Trypanosoma cruzi). Center for Disease Control and Prevention: Public Health Image Library (PHIL), Available online: http://phil.cdc.gov/phil/details.asp (accessed on 14 October 2013).
[84]  Nwaka, S.; Hudson, A. Innovative lead discovery strategies for tropical diseases. Nat. Rev. Drug Discov. 2006, 5, 941–955, doi:10.1038/nrd2144.
[85]  Dardonville, C.; Fernandez-Fernandez, C.; Gibbons, S.L.; Jagerovic, N.; Nieto, L.; Ryan, G.; Kaiser, M.; Brun, R. Antiprotozoal activity of 1-phenethyl-4-aminopiperidine derivatives. Antimicrob. Agents Chemother. 2009, 53, 3815–3821, doi:10.1128/AAC.00124-09.
[86]  Jones, D.C.; Hallyburton, I.; Stojanovski, L.; Read, K.D.; Frearson, J.A.; Fairlamb, A.H. Identification of a κ-opioid agonist as a potent and selective lead for drug development against human African trypanosomiasis. Biochem. Pharmacol. 2010, 80, 1478–1486, doi:10.1016/j.bcp.2010.07.038.
[87]  Sykes, M.L.; Baell, J.B.; Kaiser, M.; Chatelain, E.; Moawad, S.R.; Ganame, D.; Ioset, J.R.; Avery, V.M. Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign. PLoS Negl. Trop. Dis. 2012, 6, e1896, doi:10.1371/journal.pntd.0001896.
[88]  Orhan, I.; Sener, B.; Kaiser, M.; Brun, R.; Tasdemir, D. Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar. Drugs 2010, 8, 47–58, doi:10.3390/md8010047.
[89]  Tasdemir, D.; Topaloglu, B.; Perozzo, R.; Brun, R.; O’Neill, R.; Carballeira, N.M.; Zhang, X.; Tonge, P.J.; Linden, A.; Ruedi, P. Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg. Med. Chem. 2007, 15, 6834–6845, doi:10.1016/j.bmc.2007.07.032.
[90]  Regalado, E.L.; Tasdemir, D.; Kaiser, M.; Cachet, N.; Amade, P.; Thomas, O.P. Antiprotozoal steroidal saponins from the marine sponge Pandaros acanthifolium. J. Nat. Prod. 2010, 73, 1404–1410, doi:10.1021/np100348x.
[91]  Regalado, E.L.; Jimenez-Romero, C.; Genta-Jouve, G.; Tasdemir, D.; Amade, P.; Nogueiras, C.; Thomas, O.P. Acanthifoliosides, minor steroidal saponins from the Caribbean sponge Pandaros acanthifolium. Tetrahedron 2011, 67, 1011–1018, doi:10.1016/j.tet.2010.11.103.
[92]  Kossuga, M.H.; Nascimento, A.M.; Reimao, J.Q.; Tempone, A.G.; Taniwaki, N.N.; Veloso, K.; Ferreira, A.G.; Cavalcanti, B.C.; Pessoa, C.; Moraes, M.O.; et al. Antiparasitic, antineuroinflammatory, and cytotoxic polyketides from the marine sponge Plakortis angulospiculatus collected in Brazil. J. Nat. Prod. 2008, 71, 334–339, doi:10.1021/np0705256.
[93]  Feng, Y.J.; Davis, R.A.; Sykes, M.; Avery, V.M.; Camp, D.; Quinn, R.J. Antitrypanosomal cyclic polyketide peroxides from the Australian marine sponge Plakortis sp. J. Nat. Prod. 2010, 73, 716–719, doi:10.1021/np900535z.
[94]  Chianese, G.; Fattorusso, E.; Scala, F.; Teta, R.; Calcinai, B.; Bavestrello, G.; Dien, H.A.; Kaiser, M.; Tasdemir, D.; Taglialatela-Scafati, O. Manadoperoxides, a new class of potent antitrypanosomal agents of marine origin. Org. Biomol. Chem. 2012, 10, 7197–7207, doi:10.1039/c2ob26124c.
[95]  Pimentel-Elardo, S.M.; Buback, V.; Gulder, T.A.M.; Bugni, T.S.; Reppart, J.; Bringmann, G.; Ireland, C.M.; Schirmeister, T.; Hentschel, U. New tetromycin derivatives with anti-trypanosomal and protease inhibitory activities. Mar. Drugs 2011, 9, 1682–1697, doi:10.3390/md9101682.
[96]  Pontius, A.; Krick, A.; Kehraus, S.; Brun, R.; Konig, G.M. Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J. Nat. Prod. 2008, 71, 1579–1584, doi:10.1021/np800294q.
[97]  Erdogan, I.; Sener, B.; Higa, T. Tryptophol, a plant auxin isolated from the marine sponge Ircinia spinulosa. Biochem. Syst. Ecol. 2000, 28, 793–794, doi:10.1016/S0305-1978(99)00111-8.
[98]  Martinez-Luis, S.; Gomez, J.F.; Spadafora, C.; Guzman, H.M.; Gutierrez, M. Antitrypanosomal alkaloids from the marine bacterium Bacillus pumilus. Molecules 2012, 17, 11146–11155, doi:10.3390/molecules170911146.
[99]  Chan, S.T.S.; Pearce, A.N.; Page, M.J.; Kaiser, M.; Copp, B.R. Antimalarial β-carbolines from the New Zealand ascidian Pseudodistoma opacum. J. Nat. Prod. 2011, 74, 1972–1979, doi:10.1021/np200509g.
[100]  Scala, F.; Fattorusso, E.; Menna, M.; Taglialatela-Scafati, O.; Tierney, M.; Kaiser, M.; Tasdemir, D. Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar. Drugs 2010, 8, 2162–2174, doi:10.3390/md8072162.
[101]  Cafieri, F.; Fattorusso, E.; Taglialatela-Scafati, O. Novel bromopyrrole alkaloids from the sponge Agelas dispar. J. Nat. Prod. 1998, 61, 122–125, doi:10.1021/np970323h.
[102]  Cafieri, F.; Fattorusso, E.; Mangoni, A.; Taglialatelascafati, O. Longamide and 3,7-dimethylisoguanine, 2 novel alkaloids from the marine sponge Agelas longissima. Tetrahedron Lett. 1995, 36, 7893–7896.
[103]  Aiello, A.; D’Esposito, M.; Fattorusso, E.; Menna, M.; Muller, W.E.G.; Perovic-Ottstadt, S.; Schroder, H.C. Novel bioactive bromopyrrole alkaloids from the Mediterranean sponge Axinella verrucosa. Bioorg. Med. Chem. 2006, 14, 17–24, doi:10.1016/j.bmc.2005.07.057.
[104]  Walker, R.P.; Faulkner, D.J.; Van Engen, D.; Clardy, J. Sceptrin, an antimicrobial agent from the sponge Agelas sceptrum. J. Am. Chem. Soc. 1981, 103, 6772–6773, doi:10.1021/ja00412a052.
[105]  Wu, H.; Nakamura, H.; Kobayashi, J.; Kobayashi, M.; Ohizumi, Y.; Hirata, Y. Structures of agelasines, diterpenes having a 9-methyladeninium chromophore isolated from the Okinawan marine sponge Agelas nakamurai hoshino. Bull. Chem. Soc. Jpn. 1986, 59, 2495–2504, doi:10.1246/bcsj.59.2495.
[106]  Vik, A.; Proszenyak, A.; Vermeersch, M.; Cos, P.; Maes, L.; Gundersen, L.L. Screening of agelasine D and analogs for inhibitory activity against pathogenic protozoa; Identification of hits for visceral leishmaniasis and Chagas disease. Molecules 2009, 14, 279–288, doi:10.3390/molecules14010279.
[107]  Davis, R.A.; Sykes, M.; Avery, V.M.; Camp, D.; Quinn, R.J. Convolutamines I and J, antitrypanosomal alkaloids from the bryozoan Amathia tortusa. Bioorg. Med. Chem. 2011, 19, 6615–6619, doi:10.1016/j.bmc.2011.06.006.
[108]  Feng, Y.J.; Davis, R.A.; Sykes, M.L.; Avery, V.M.; Quinn, R.J. Iotrochamides A and B, antitrypanosomal compounds from the Australian marine sponge Iotrochota sp. Bioorg. Med. Chem. Lett. 2012, 22, 4873–4876, doi:10.1016/j.bmcl.2012.05.029.
[109]  Wright, A.D.; Goclik, E.; Koenig, G.M.; Kaminsky, R. Lepadins D–F: Antiplasmodial and antitrypanosomal decahydroquinoline derivatives from the tropical marine tunicate Didemnum sp. J. Med. Chem. 2002, 45, 3067–3072, doi:10.1021/jm0110892.
[110]  Volk, C.A.; Kock, M. Viscosamine: The first naturally occurring trimeric 3-alkyl pyridinium alkaloid. Org. Lett. 2003, 5, 3567–3569, doi:10.1021/ol035006i.
[111]  Rodenko, B.; Al-Salabi, M.I.; Teka, I.A.; Ho, W.; El-Sabbagh, N.; Ali, J.A.M.; Ibrahim, H.M.S.; Wanner, M.J.; Koomen, G.; De Koning, H.P. Synthesis of marine-derived 3-alkylpyridinium alkaloids with potent antiprotozoal activity. ACS Med. Chem. Lett. 2011, 2, 901–906, doi:10.1021/ml200160k.
[112]  Kirsch, G.; Konig, G.M.; Wright, A.D.; Kaminsky, R. A new bioactive sesterterpene and antiplasmodial alkaloids from the marine sponge Hyrtios cf. erecta. J. Nat. Prod. 2000, 63, 825–829, doi:10.1021/np990555b.
[113]  Feng, Y.J.; Davis, R.A.; Sykes, M.L.; Avery, V.M.; Carroll, A.R.; Camp, D.; Quinn, R.J. Antitrypanosomal pyridoacridine alkaloids from the Australian ascidian Polysyncraton echinatum. Tetrahedron Lett. 2010, 51, 2477–2479, doi:10.1016/j.tetlet.2010.02.161.
[114]  Watts, K.R.; Ratnam, J.; Ang, K.H.; Tenney, K.; Compton, J.E.; McKerrow, J.; Crews, P. Assessing the trypanocidal potential of natural and semi-synthetic diketopiperazines from two deep water marine-derived fungi. Bioorg. Med. Chem. 2010, 18, 2566–2574.
[115]  Linington, R.G.; Gonzalez, J.; Urena, L.D.; Romero, L.I.; Ortega-Barría, E.; Gerwick, W.H. Venturamides A and B: Antimalarial constituents of the Panamanian marine cyanobacterium Oscillatoria sp. J. Nat. Prod. 2007, 70, 397–401, doi:10.1021/np0605790.
[116]  Portmann, C.; Blom, J.F.; Kaiser, M.; Brun, R.; Juttner, F.; Gademann, K. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J. Nat. Prod. 2008, 71, 1891–1896, doi:10.1021/np800409z.
[117]  Sanchez, L.M.; Knudsen, G.M.; Helbig, C.; De Muylder, G.; Mascuch, S.M.; Mackey, Z.B.; Gerwick, L.; Clayton, C.; McKerrow, J.H.; Linington, R.G. Examination of the mode of action of the almiramide family of natural products against the kinetoplastid parasite Trypanosoma brucei. J. Nat. Prod. 2013. in press.
[118]  Verlinde, C.L.; Hannaert, V.; Blonski, C.; Willson, M.; Perie, J.J.; Fothergill-Gilmore, L.A.; Opperdoes, F.R.; Gelb, M.H.; Hol, W.G.; Michels, P.A. Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist. Updat. 2001, 4, 50–65, doi:10.1054/drup.2000.0177.
[119]  Fattorusso, C.; Persico, M.; Calcinai, B.; Cerrano, C.; Parapini, S.; Taramelli, D.; Novellino, E.; Romano, A.; Scala, F.; Fattorusso, E.; et al. Manadoperoxides A–D from the Indonesian sponge Plakortis cfr. simplex. Further insights on the structure-activity relationships of simple 1,2-dioxane antimalarials. J. Nat. Prod. 2010, 73, 1138–1145, doi:10.1021/np100196b.
[120]  El-Seedi, H.R.; El-Barbary, M.A.; El-Ghorab, D.M.H.; Bohlin, L.; Borg-Karlson, A.K.; Goransson, U.; Verpoorte, R. Recent insights into the biosynthesis and biological activities of natural xanthones. Curr. Med. Chem. 2010, 17, 854–901, doi:10.2174/092986710790712147.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133