All Title Author
Keywords Abstract

Marine Drugs  2013 

Bioprospecting Marine Plankton

DOI: 10.3390/md11114594

Keywords: bioprospecting, high-throughput screening, plankton natural product, marine natural product, biodiversity, molecule discovery

Full-Text   Cite this paper   Add to My Lib


The ocean dominates the surface of our planet and plays a major role in regulating the biosphere. For example, the microscopic photosynthetic organisms living within provide 50% of the oxygen we breathe, and much of our food and mineral resources are extracted from the ocean. In a time of ecological crisis and major changes in our society, it is essential to turn our attention towards the sea to find additional solutions for a sustainable future. Remarkably, while we are overexploiting many marine resources, particularly the fisheries, the planktonic compartment composed of zooplankton, phytoplankton, bacteria and viruses, represents 95% of marine biomass and yet the extent of its diversity remains largely unknown and underexploited. Consequently, the potential of plankton as a bioresource for humanity is largely untapped. Due to their diverse evolutionary backgrounds, planktonic organisms offer immense opportunities: new resources for medicine, cosmetics and food, renewable energy, and long-term solutions to mitigate climate change. Research programs aiming to exploit culture collections of marine micro-organisms as well as to prospect the huge resources of marine planktonic biodiversity in the oceans are now underway, and several bioactive extracts and purified compounds have already been identified. This review will survey and assess the current state-of-the-art and will propose methodologies to better exploit the potential of marine plankton for drug discovery and for dermocosmetics.


[1]  Yach, D.; Hawkes, C.; Gould, L.; Hoffman, K.J. The global burden of chronic diseases: Overcoming impediments to prevention and control. JAMA 2004, 291, 2616–2622, doi:10.1001/jama.291.21.2616.
[2]  Shah, N.S.; Wright, A.; Bai, G.-H.; Barrera, L.; Boulahbal, F.; Martín-Casabona, N.; Drobniewski, F.; Gilpin, C.; Havelková, M.; Lepe, R.; et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg. Infect. Dis. 2007, 13, 380–387, doi:10.3201/eid1303.061400.
[3]  Spellberg, B.; Bartlett, J.G.; Gilbert, D.N. The future of antibiotics and resistance. N. Engl. J. Med. 2013, 368, 299–302, doi:10.1056/NEJMp1215093.
[4]  Guilbert, J.J. The world health report 2002—reducing risks, promoting healthy life. Educ. Health (Abingdon) 2003, 16, 230, doi:10.1080/13576280310001607596.
[5]  Wellington, E.M.; Boxall, A.B.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis. 2013, 13, 155–165, doi:10.1016/S1473-3099(12)70317-1.
[6]  Willett, W.C.; Koplan, J.P.; Nugent, R.; Dusenbury, C.; Puska, P.; Gaziano, T.A. Prevention of Chronic Disease by Means of Diet and Lifestyle Changes. In Disease Control Priorities in Developing Countries; Jamison, D.T., Breman, J.G., Measham, A.R., Alleyne, G., Claeson, M., Evans, D.B., Jha, P., Mills, A., Musgrove, P., Eds.; World Bank: Washington, DC, USA, 2006.
[7]  Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975, doi:10.1073/pnas.0403720101.
[8]  Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620, doi:10.1126/science.1204531.
[9]  Falkowski, P. The once and future ocean. Oceanography 2009, 22, 246–251, doi:10.5670/oceanog.2009.57.
[10]  U.S. Energy Information Administration: Total Primary Energy Consumption 1990–2010. Available online: (accessed 1 October 2013).
[11]  Cushman, G.T. Guano and the Opening of the Pacific World: A Global Ecological History; Cambridge University Press: Cambridge, NY, USA, 2012.
[12]  Bowler, C.; Karl, D.M.; Colwell, R.R. Microbial oceanography in a sea of opportunity. Nature 2009, 459, 180–184, doi:10.1038/nature08056.
[13]  Motti, C.A.; Ettinger-Epstein, P.; Willis, R.H.; Tapiolas, D.M. ESI FTICR-MS analysis of larvae from the marine sponge Luffariella variabilis. Mar. Drugs 2010, 8, 190–199, doi:10.3390/md8010190.
[14]  McClintock, J.B.; Vernon, J.D. Chemical defense in the eggs and embryos of antarctic sea stars (Echinodermata). Mar. Biol. 1990, 105, 491–495, doi:10.1007/BF01316320.
[15]  Lindquist, N.; Hay, M.E.; Fenical, W. Defense of ascidians and their conspicuous larvae: Adult vs. larval chemical defenses. Ecol. Monogr. 1992, 62, 547–568, doi:10.2307/2937316.
[16]  Cowart, J.D.; Fielman, K.T.; Woodin, S.A.; Lincoln, D.E. Halogenated metabolites in two marine polychaetes and their planktotrophic and lecithotrophic larvae. Mar. Biol. 2000, 136, 993–1002, doi:10.1007/s002270000271.
[17]  Lopanik, N.; Lindquist, N.; Targett, N. Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia 2004, 139, 131–139, doi:10.1007/s00442-004-1487-5.
[18]  Rusch, D.B.; Halpern, A.L.; Sutton, G.; Heidelberg, K.B.; Williamson, S.; Yooseph, S.; Wu, D.; Eisen, J.A.; Hoffman, J.M.; Remington, K.; et al. The sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol. 2007, 5, e77, doi:10.1371/journal.pbio.0050077.
[19]  Field, C.B. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240, doi:10.1126/science.281.5374.237.
[20]  Ciferri, O. Spirulina, the edible microorganism. Microbiol. Rev. 1983, 47, 551–578.
[21]  Muller-Feuga, A. The role of microalgae in aqua culture: Situation and trends. J. Appl. Phycol. 2000, 12, 527–534, doi:10.1023/A:1008106304417.
[22]  Raposo, M.; de Morais, R.; Bernardo de Morais, A. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs 2013, 11, 233–252, doi:10.3390/md11010233.
[23]  Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112.
[24]  Muto, M.; Fukuda, Y.; Nemoto, M.; Yoshino, T.; Matsunaga, T.; Tanaka, T. Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580—a high triglyceride producer. Mar. Biotechnol. 2013, 15, 48–55, doi:10.1007/s10126-012-9457-0.
[25]  Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2012, 29, 144–222, doi:10.1039/c2np00090c.
[26]  Pasquet, V.; Morisset, P.; Ihammouine, S.; Chepied, A.; Aumailley, L.; Berard, J.-B.; Serive, B.; Kaas, R.; Lanneluc, I.; Thiery, V.; et al. Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Mar. Drugs 2011, 9, 819–831, doi:10.3390/md9050819.
[27]  Sainis, I.; Fokas, D.; Vareli, K.; Tzakos, A.G.; Kounnis, V.; Briasoulis, E. Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar. Drugs 2010, 8, 629–657, doi:10.3390/md8030629.
[28]  Ramsdell, J.S. The molecular and integrative basis to domoic acid toxicity. In Phycotoxins: Chemistry and Biochemistry; Botana, L.M., Ed.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 223–250.
[29]  Moreau, D.; Tomasoni, C.; Jacquot, C.; Kaas, R.; Le Guedes, R.; Cadoret, J.-P.; Muller-Feuga, A.; Kontiza, I.; Vagias, C.; Roussis, V.; et al. Cultivated microalgae and the carotenoid fucoxanthin from Odontella aurita as potent anti-proliferative agents in bronchopulmonary and epithelial cell lines. Environ. Toxicol. Pharmacol. 2006, 22, 97–103, doi:10.1016/j.etap.2006.01.004.
[30]  Dambek, M.; Eilers, U.; Breitenbach, J.; Steiger, S.; Büchel, C.; Sandmann, G. Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum. J. Exp. Bot. 2012, 63, 5607–5612, doi:10.1093/jxb/ers211.
[31]  D’Orazio, N.; Gemello, E.; Gammone, M.A.; de Girolamo, M.; Ficoneri, C.; Riccioni, G. Fucoxantin: A treasure from the sea. Mar. Drugs 2012, 10, 604–616, doi:10.3390/md10030604.
[32]  Hamilton-Miller, J.M.T. Development of the semi-synthetic penicillins and cephalosporins. Int. J. Antimicrob. Agents 2008, 31, 189–192, doi:10.1016/j.ijantimicag.2007.11.010.
[33]  De Petrocellis, L.; Orlando, P.; Gavagnin, M.; Ventriglia, M.; Cimino, G.; Di Marzo, V. Novel diterpenoid diacylglycerols from marine molluscs: Potent morphogens and protein kinase C activators. Experientia 1996, 52, 874–877, doi:10.1007/BF01938873.
[34]  Eom, S.-H.; Kim, Y.-M.; Kim, S.-K. Antimicrobial effect of phlorotannins from marine brown algae. Food Chem. Toxicol. 2012, 50, 3251–3255, doi:10.1016/j.fct.2012.06.028.
[35]  Saiki, R.K.; Gelfand, D.H.; Stoffel, S.; Scharf, S.J.; Higuchi, R.; Horn, G.T.; Mullis, K.B.; Erlich, H.A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988, 239, 487–491.
[36]  Bulteau, A.-L.; Moreau, M.; Saunois, A.; Nizard, C.; Friguet, B. Algae extract-mediated stimulation and protection of proteasome activity within human keratinocytes exposed to UVA and UVB irradiation. Antioxid. Redox Signal. 2006, 8, 136–143, doi:10.1089/ars.2006.8.136.
[37]  Caron, D.A.; Countway, P.D.; Jones, A.C.; Kim, D.Y.; Schnetzer, A. Marine protistan diversity. Annu. Rev. Mar. Sci. 2012, 4, 467–493, doi:10.1146/annurev-marine-120709-142802.
[38]  Andersen, R.A. Algal Culturing Techniques; Elsevier/Academic Press: Burlington, MA, USA, 2005.
[39]  National Center for Marine Algae and Microbiotia. Available online: (accessed on 1 October 2013).
[40]  Culture Collection of Algae and Protozoa. Available online: (accessed on 1 October 2013).
[41]  Roscoff Culture Collection. Available online: (accessed on 1 October 2013).
[42]  Microbial Culture Collection. Available online: (accessed on 1 October 2013).
[43]  Australian National Algae Culture Collection. Available online: (accessed on 1 October 2013).
[44]  Probert, I.; Houdan, A. The Laboratory Culture of Coccolithophores. In Coccolithophores; Thierstein, H.R., Young, J.R., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2004; pp. 217–249.
[45]  Marine Microorganisms: Cultivation Methods for Improving their Biotechnological Applications. Available online: (accessed on 1 October 2013).
[46]  Dent, R.M.; Haglund, C.M.; Chin, B.L.; Kobayashi, M.C.; Niyogi, K.K. Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol. 2005, 137, 545–556, doi:10.1104/pp.104.055244.
[47]  De Riso, V.; Raniello, R.; Maumus, F.; Rogato, A.; Bowler, C.; Falciatore, A. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res. 2009, 37, e96, doi:10.1093/nar/gkp448.
[48]  Van Ooijen, G.; Knox, K.; Kis, K.; Bouget, F.-Y.; Millar, A.J. Genomic transformation of the picoeukaryote Ostreococcus tauri. J. Vis. Exp. 2012, 65, e4074.
[49]  Bhakuni, D.S.; Rawat, D.S. Bioactive Marine Natural Products; Springer: New York, NY, USA, 2005.
[50]  Postec, A.; Lesongeur, F.; Pignet, P.; Ollivier, B.; Querellou, J.; Godfroy, A. Continuous enrichment cultures: Insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys. Extremophiles 2007, 11, 747–757, doi:10.1007/s00792-007-0092-z.
[51]  Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How many species are there on earth and in the ocean? PLoS Biol. 2011, 9, e1001127, doi:10.1371/journal.pbio.1001127.
[52]  Appeltans, W.; Ahyong, S.T.; Anderson, G.; Angel, M.V.; Artois, T.; Bailly, N.; Bamber, R.; Barber, A.; Bartsch, I.; Berta, A.; et al. The magnitude of global marine species diversity. Curr. Biol. 2012, 22, 2189–2202, doi:10.1016/j.cub.2012.09.036.
[53]  Tara Oceans Science. Available online: (accessed on 1 October 2013).
[54]  Karsenti, E.; Acinas, S.G.; Bork, P.; Bowler, C.; de Vargas, C.; Raes, J.; Sullivan, M.; Arendt, D.; Benzoni, F.; Claverie, J.-M.; et al. Tara Oceans Consortium A holistic approach to marine eco-systems biology. PLoS Biol. 2011, 9, e1001177, doi:10.1371/journal.pbio.1001177.
[55]  Malaspina 2010. Available online: (accessed on 1 October 2013).
[56]  Walsh, C.T. Polyketide and nonribosomal peptide antibiotics: Modularity and versatility. Science 2004, 303, 1805–1810, doi:10.1126/science.1094318.
[57]  Yang, Z.-K.; Niu, Y.-F.; Ma, Y.-H.; Xue, J.; Zhang, M.-H.; Yang, W.-D.; Liu, J.-S.; Lu, S.-H.; Guan, Y.; Li, H.-Y. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol. Biofuels 2013, 6, 67, doi:10.1186/1754-6834-6-67.
[58]  Lauritano, C.; Borra, M.; Carotenuto, Y.; Biffali, E.; Miralto, A.; Procaccini, G.; Ianora, A. Molecular evidence of the toxic effects of diatom diets on gene expression patterns in copepods. PLoS One 2011, 6, e26850.
[59]  Vardi, A.; Formiggini, F.; Casotti, R.; Martino, A.D.; Ribalet, F.; Miralto, A.; Bowler, C. A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol. 2006, 4, e60, doi:10.1371/journal.pbio.0040060.
[60]  Adolph, S.; Bach, S.; Blondel, M.; Cueff, A.; Moreau, M.; Pohnert, G.; Poulet, S.A.; Wichard, T.; Zuccaro, A. Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla. J. Exp. Biol. 2004, 207, 2935–2946, doi:10.1242/jeb.01105.
[61]  De Caralt, S.; Bry, D.; Bontemps, N.; Turon, X.; Uriz, M.-J.; Banaigs, B. Sources of secondary metabolite variation in Dysidea avara (porifera: demospongiae): The importance of having good neighbors. Mar. Drugs 2013, 11, 489–503, doi:10.3390/md11020489.
[62]  Marine Genetics Ressources—CIESM Charter on ABS. Available online: (accessed on 1 October 2013).
[63]  Paris appeal for the high seas. Available online: (accessed on 1 October 2013).
[64]  El-Elimat, T.; Figueroa, M.; Ehrmann, B.M.; Cech, N.B.; Pearce, C.J.; Oberlies, N.H. High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. J. Nat. Prod. 2013, 76, 1709–1716, doi:10.1021/np4004307.
[65]  Wang, H.; Liu, N.; Xi, L.; Rong, X.; Ruan, J.; Huang, Y. Genetic screening strategy for rapid access to polyether ionophore producers and products in actinomycetes. Appl. Environ. Microbiol. 2011, 77, 3433–3442, doi:10.1128/AEM.02915-10.
[66]  Miller, K.I.; Qing, C.; Sze, D.M.Y.; Neilan, B.A. Investigation of the biosynthetic potential of endophytes in traditional chinese anticancer herbs. PLoS One 2012, 7, e35953.
[67]  Hou, Y.; Braun, D.R.; Michel, C.R.; Klassen, J.L.; Adnani, N.; Wyche, T.P.; Bugni, T.S. Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal. Chem. 2012, 84, 4277–4283, doi:10.1021/ac202623g.
[68]  Bode, H.B.; Bethe, B.; H?fs, R.; Zeeck, A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. Chembiochem 2002, 3, 619–627, doi:10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9.
[69]  Kjer, J.; Debbab, A.; Aly, A.H.; Proksch, P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat. Protoc. 2010, 5, 479–490, doi:10.1038/nprot.2009.233.
[70]  Serive, B.; Kaas, R.; Bérard, J.-B.; Pasquet, V.; Picot, L.; Cadoret, J.-P. Selection and optimisation of a method for efficient metabolites extraction from microalgae. Bioresour. Technol. 2012, 124, 311–320, doi:10.1016/j.biortech.2012.07.105.
[71]  Kornprobst, J.M. Encyclopedia of Marine Natural Products; Wiley-Blackwell: Weinheim, Germany, 2010.


comments powered by Disqus

Contact Us


微信:OALib Journal