All Title Author
Keywords Abstract

Marine Drugs  2013 

Identification of Four New agr Quorum Sensing-Interfering Cyclodepsipeptides from a Marine Photobacterium

DOI: 10.3390/md11125051

Keywords: Photobacterium, depsipeptide, structure elucidation, quorum sensing, antivirulence, agr

Full-Text   Cite this paper   Add to My Lib

Abstract:

During our search for new natural products from the marine environment, we discovered a wide range of cyclic peptides from a marine Photobacterium, closely related to P. halotolerans. The chemical fingerprint of the bacterium showed primarily non-ribosomal peptide synthetase (NRPS)-like compounds, including the known pyrrothine antibiotic holomycin and a wide range of peptides, from diketopiperazines to cyclodepsipeptides of 500–900 Da. Purification of components from the pellet fraction led to the isolation and structure elucidation of four new cyclodepsipeptides, ngercheumicin F, G, H, and I. The ngercheumicins interfered with expression of virulence genes known to be controlled by the agr quorum sensing system of Staphylococcus aureus, although to a lesser extent than the previously described solonamides from the same strain of Photobacterium.

References

[1]  Jensen, P.R.; Fenical, W. Marine bacterial diversity as a resource for novel microbial products. J. Ind. Microbiol. 1996, 17, 346–351.
[2]  Gerwick, W.H.; Moore, B.S. Lessons from the Past and Charting the Future of Marine Natural Products Drug Discovery and Chemical Biology. Chem. Biol. 2012, 19, 85–98, doi:10.1016/j.chembiol.2011.12.014.
[3]  Gram, L.; Melchiorsen, J.; Bruhn, J.B. Antibacterial Activity of Marine Culturable Bacteria Collected from a Global Sampling of Ocean Surface Waters and Surface Swabs of Marine Organisms. Mar. Biotechnol. 2010, 12, 439–451, doi:10.1007/s10126-009-9233-y.
[4]  Wietz, M.; Mansson, M.; Gotfredsen, C.H.; Larsen, T.O.; Gram, L. Antibacterial Compounds from Marine Vibrionaceae Isolated on a Global Expedition. Mar. Drugs 2010, 8, 2946–2960, doi:10.3390/md8122946.
[5]  Mansson, M.; Nielsen, A.; Kj?rulff, L.; Gotfredsen, C.H.; Wietz, M.; Ingmer, H.; Gram, L.; Larsen, T.O. Inhibition of Virulence Gene Expression in Staphylococcus aureus by Novel Depsipeptides from a Marine Photobacterium. Mar. Drugs 2011, 9, 2537–2552, doi:10.3390/md9122537.
[6]  Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 2010, 9, 117–128, doi:10.1038/nrd3013.
[7]  Novick, R.; Geisinger, E. Quorum Sensing in Staphylococci. Annu. Rev. Genet. 2008, 42, 541–564, doi:10.1146/annurev.genet.42.110807.091640.
[8]  Adachi, K.; Kawabata, Y.; Kasai, H.; Katsuta, M.; Shizuri, Y.. (Marine Biotechnol. Inst. Co. Ltd.) New Antibiotic. Jpn. Pat. Appl. JP 2007230911 A, 13 September 2007.
[9]  Muir, T.W. Turning Virulence on and off in Staphylococci. J. Pept. Sci. 2003, 9, 612–619, doi:10.1002/psc.486.
[10]  Lyon, G.J.; Mayville, P.; Muir, T.W.; Novick, R.P. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc. Natl. Acad. Sci. USA 2000, 97, 13330–13335, doi:10.1073/pnas.97.24.13330.
[11]  Mayville, P.; Ji, G.; Beavis, R.; Yang, H.; Goger, M.; Novick, R.P.; Muir, T.W. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA 1999, 96, 1218–1223, doi:10.1073/pnas.96.4.1218.
[12]  Wright, J.S., III; Lyon, G.J.; George, E.A.; Muir, T.W.; Novick, R.P. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing. Proc. Natl. Acad. Sci. USA 2004, 101, 16168–16173, doi:10.1073/pnas.0404039101.
[13]  Gunstone, F.D.; Pollard, M.R.; Scrimgeour, C.M.; Vedanayagam, H.S. 13C Nuclear magnetic resonance studies of olefinic fatty acids and esters. Chem. Phys. Lipids 1977, 18, 115–129, doi:10.1016/0009-3084(77)90031-7.
[14]  Fujii, K.; Ikao, Y.; Oka, H.; Suzuki, M.; Harada, K. A Nonempirical Method Using LC/MS for Determination of the Absolute Configuration of Constituent Amino Acids in a Peptide: Combination of Marfey’s Method with Mass Spectrometry and Its Practical Applications. Anal. Chem. 1997, 69, 5146–5151, doi:10.1021/ac970289b.
[15]  Bonnard, I.; Manzanares, I.; Rinehart, K.L. Stereochemistry of Kahalalide F. J. Nat. Prod. 2003, 66, 1466–1470, doi:10.1021/np030334c.
[16]  Harada, K.; Fujii, K.; Mayumi, T.; Hibino, Y.; Suzuki, M. A Method Using LC/MS for Determination of Absolute Configuration of Constituent Amino Acids in Peptide—Advanced Marfey’s Method. Tetrahedron Lett. 1995, 36, 1515–1518, doi:10.1016/0040-4039(95)00078-Q.
[17]  Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2013, 30, 237–323, doi:10.1039/c2np20112g.
[18]  Molhoek, E.M.; van Dijk, A.; Veldhuizen, E.J.A.; Haagsman, H.P.; Bikker, F.J. Improved proteolytic stability of chicken cathelicidin-2 derived peptides by d-amino acid substitutions and cyclization. Peptides 2011, 32, 875–880, doi:10.1016/j.peptides.2011.02.017.
[19]  Nielsen, A.; Nielsen, K.F.; Frees, D.; Larsen, T.O.; Ingmer, H. Method for Screening Compounds That Influence Virulence Gene Expression in Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 509–512, doi:10.1128/AAC.00940-09.
[20]  Ji, G.; Beavis, R.; Novick, R.P. Bacterial Interference Caused by Autoinducing Peptide Variants. Science 1997, 276, 2027–2030, doi:10.1126/science.276.5321.2027.
[21]  Thoendel, M.; Kavanaugh, J.S.; Flack, C.E.; Horswill, A.R. Peptide Signalling in the Staphylococci. Chem. Rev. 2011, 111, 117–151, doi:10.1021/cr100370n.
[22]  Williams, P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 2007, 153, 3923–3938, doi:10.1099/mic.0.2007/012856-0.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal