全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tissue Engineering of the Corneal Endothelium: A Review of Carrier Materials

DOI: 10.3390/jfb4040178

Keywords: tissue engineering, corneal endothelium, corneal endothelial cell sheets, natural membranes, biological polymers, thermo-responsive polymers, physicochemical properties, biomolecular functionalization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Functional impairment of the human corneal endothelium can lead to corneal blindness. In order to meet the high demand for transplants with an appropriate human corneal endothelial cell density as a prerequisite for corneal function, several tissue engineering techniques have been developed to generate transplantable endothelial cell sheets. These approaches range from the use of natural membranes, biological polymers and biosynthetic material compositions, to completely synthetic materials as matrices for corneal endothelial cell sheet generation. This review gives an overview about currently used materials for the generation of transplantable corneal endothelial cell sheets with a special focus on thermo-responsive polymer coatings.

References

[1]  Brubaker, R.F. The flow of aqueous humor in the human eye. Trans. Am. Ophthalmol. Soc. 1982, 80, 391–474.
[2]  Nishida, T.; Saika, S. Cornea and Sclera: Anatomy and Physiology. In Cornea—Fundamentals, Diagnosis and Management; Krachmer, J.H., Mannis, M.J., Holland, E.J., Eds.; Mosby Elsevier: Linn, MO, USA, 2011; pp. 3–24.
[3]  DelMonte, D.W.; Kim, T. Anatomy and physiology of the cornea. J. Cataract. Refract. Surg. 2011, 37, 588–598, doi:10.1016/j.jcrs.2010.12.037.
[4]  Doughty, M.J.; Zaman, M.L. Human corneal thickness and its impact on intraocular pressure measures: A review and meta-analysis approach. Surv. Ophthalmol. 2000, 44, 367–408, doi:10.1016/S0039-6257(00)00110-7.
[5]  Funderburgh, J.L. The Corneal Stroma. In Encyclopedia of the Eye; Dartt, D.A., Besharse, J.C., Dana, R., Eds.; Elsevier Ltd.: Boston, MA, USA, 2010; pp. 515–521.
[6]  Hanna, C.; Bicknell, D.S.; O’Brien, J.E. Cell turnover in the adult human eye. AMA Arch. Ophthalmol. 1961, 156, 695–698.
[7]  Sun, T.-T.; Lavker, R.M. Corneal epithelial stem cells: Past, present, and future. J. Investig. Dermatol. Symp. Proc. 2004, 9, 202–207, doi:10.1111/j.1087-0024.2004.09311.x.
[8]  Oliveira-Soto, L.; Efron, N. Morphology of corneal nerves using confocal microscopy. Cornea 2001, 20, 374–384, doi:10.1097/00003226-200105000-00008.
[9]  Patel, D.V; McGhee, C.N.J. In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: A review. Br. J. Ophthalmol. 2009, 93, 853–860, doi:10.1136/bjo.2008.150615.
[10]  Edelhauser, H.F. The balance between corneal transparency and edema. Invest. Ophthalmol. Vis. Sci. 2006, 47, 1755–1767, doi:10.1167/iovs.05-1139.
[11]  Von der Mark, K.; Park, J. Engineering biocompatible implant surfaces Part II: Cellular recognition of biomaterial surfaces: Lessons from cell-matrix interactions. Prog. Mater. Sci. 2013, 58, 327–381, doi:10.1016/j.pmatsci.2012.09.002.
[12]  Komai, Y.; Ushiki, T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest. Ophthalmol. Vis. Sci. 1991, 32, 2244–2258.
[13]  Kabosova, A.; Azar, D.T.; Bannikov, G.A.; Campbell, K.P.; Durbeej, M.; Ghohestani, R.F.; Jones, J.C.R.; Kenney, M.C.; Koch, M.; Ninomiya, Y.; et al. Compositional differences between infant and adult human corneal basement membranes. Invest. Ophthalmol. Vis. Sci. 2007, 48, 4989–4999, doi:10.1167/iovs.07-0654.
[14]  Tuft, S.J.; Coster, D.J. The corneal endothelium. Eye 1990, 4, 389–424, doi:10.1038/eye.1990.53.
[15]  McGowan, S.L.; Edelhauser, H.F.; Pfister, R.R.; Whikehart, D.R. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas. Mol. Vis. 2007, 13, 1984–2000.
[16]  Bourne, W.M.; Nelson, L.R.; Hodge, D.O. Central corneal endothelial cell changes over a ten-year period. Invest. Ophthalmol. Vis. Sci. 1997, 38, 779–782.
[17]  Kaufman, H.E.; Capella, J.A.; Robbins, J.E. The human corneal endothelium. Am. J. Ophthalmol. 1966, 61, 835–841.
[18]  Hoppenreijs, V.P.T.; Pels, E.; Gijs, F.J.M.; Treffers, W.F. Corneal endothelium and growth factors. Surv. Ophthalmol. 1996, 41, 155–164, doi:10.1016/S0039-6257(96)80005-1.
[19]  Lu, Q.; Fuchsluger, T.A.; Jurkunas, U.V. Regulation of corneal endothelial cell proliferation. In Encyclopedia of the Eye; Dartt, D.A., Besharse, J.C., Dana, R., Eds.; Elsevier: Boston, MA, USA, 2010; pp. 15–20.
[20]  Senoo, T.; Joyce, N.C. Cell cycle kinetics in corneal endothelium from old and young donors. Invest. Ophthalmol. Vis. Sci. 2000, 41, 660–667.
[21]  Zhu, C.; Joyce, N.C. Proliferative response of corneal endothelial cells from young and older donors. Invest. Ophthalmol. Vis. Sci. 2004, 45, 1743–1751, doi:10.1167/iovs.03-0814.
[22]  Joyce, N.C. Cell cycle status in human corneal endothelium. Exp. Eye Res. 2005, 81, 629–638, doi:10.1016/j.exer.2005.06.012.
[23]  Paull, A.C.; Whikehart, D.R. Expression of the p53 family of proteins in central and peripheral human corneal endothelial cells. Mol. Vis. 2005, 11, 328–334.
[24]  Kelley, M.J.; Rose, A.Y.; Keller, K.E.; Hessle, H.; Samples, J.R.; Acott, T.S. Stem cells in the trabecular meshwork: Present and future promises. Exp. Eye Res. 2009, 88, 747–751, doi:10.1016/j.exer.2008.10.024.
[25]  Dikstein, B.Y.S.; Maurice, D.M. The metabolic basis to the fluid pump in the cornea. J. Physiol. 1972, 221, 29–41.
[26]  Edelhauser, H.F. The resiliency of the corneal endothelium to refractive and intraocular surgery. Cornea 2000, 19, 263–273, doi:10.1097/00003226-200005000-00002.
[27]  Fischbarg, J.; Maurice, D.M. An update on corneal hydration control. Exp. Eye Res. 2004, 78, 537–541, doi:10.1016/j.exer.2003.09.010.
[28]  Srinivas, S.P. Dynamic regulation of barrier integrity of the corneal endothelium. Optom. Vis. Sci. 2010, 87, E239–E254.
[29]  Hogan, M.J.; Alvarado, J.A.; Weddell, J. Histology of the Human Eye; W.B. Saunders Company: Philadelphia, PA, USA, 1971; p. 687.
[30]  Maurice, D.M. The location of the fluid pump in the cornea. J. Physiol. 1972, 221, 43–54.
[31]  Guggenheim, J.A.; Hodson, S.A. Localization of Na+/K+-ATPase in the bovine corneal endothelium. Biochim. Biophys. Acta 1994, 1189, 127–134, doi:10.1016/0005-2736(94)90057-4.
[32]  Maurice, D.M. The permeability to sodium ions of the living rabbit’s cornea. J. Physiol. 1951, 12, 367–391.
[33]  Fischbarg, J.; Aires, B.; Council, N. Fluid transport across leaky epithelia: Central role of the tight junction and supporting role of aquaporins. Physiol. Rev. 2010, 90, 1271–1290, doi:10.1152/physrev.00025.2009.
[34]  Fischbarg, J.; Diecke, F.P.J.; Iserovich, P.; Rubashkin, A. The role of the tight junction in paracellular fluid transport across corneal endothelium. Electro-osmosis as a driving force. J. Membr. Biol. 2006, 210, 117–130, doi:10.1007/s00232-005-0850-8.
[35]  Diecke, F.P.J.; Ma, L.; Iserovich, P.; Fischbarg, J. Corneal endothelium transports fluid in the absence of net solute transport. Biochim. Biophys. Acta 2007, 1768, 2043–2048, doi:10.1016/j.bbamem.2007.05.020.
[36]  Fischbarg, J.; Diecke, F.P.J. A mathematical model of electrolyte and fluid transport across corneal endothelium. J. Membr. Biol. 2005, 203, 41–56, doi:10.1007/s00232-004-0730-7.
[37]  Engelmann, K.; Bednarz, J.; Valtink, M. Prospects for endothelial transplantation. Exp. Eye Res. 2004, 78, 573–578, doi:10.1016/S0014-4835(03)00209-4.
[38]  Krachmer, J.H. Posterior polymorphous corneal dystrophy: A disease characterized by epithelial-like endothelial cells which influence management and prognosis. Trans. Am. Ophthalmol. Soc. 1985, 83, 413–475.
[39]  McCartney, A.C.; Kirkness, C.M. Comparison between posterior polymorphous dystrophy and congenital hereditary endothelial dystrophy of the cornea. Eye 1988, 2, 63–70, doi:10.1038/eye.1988.14.
[40]  Adamis, A.P.; Filatov, V.; Tripathi, B.J.; Tripathi, R.C. Fuchs’ endothelial dystrophy of the cornea. Surv. Ophthalmol. 1993, 38, 149–168, doi:10.1016/0039-6257(93)90099-S.
[41]  Elhalis, H.; Azizi, B.; Jurkunas, U.V. Fuchs endothelial corneal dystrophy. Ocul. Surf. 2011, 8, 173–184, doi:10.1016/S1542-0124(12)70232-X.
[42]  Proulx, S.; Brunette, I. Methods being developed for preparation, delivery and transplantation of a tissue-engineered corneal endothelium. Exp. Eye Res. 2012, 95, 68–75, doi:10.1016/j.exer.2011.06.013.
[43]  Tan, D.T.H.; Dart, J.K.G.; Holland, E.J.; Kinoshita, S. Corneal transplantation. Lancet 2012, 379, 1749–1761, doi:10.1016/S0140-6736(12)60437-1.
[44]  Reinhard, T.; B?hringer, D.; Enczmann, J.; Wernet, P.; Sundmacher, R. HLA-Matching bei perforierender Keratoplastik. Deutsch. ?rzteblatt 2003, 100, A1198–A1210. (in German).
[45]  Maier, P.; Reinhard, T. Keratoplasty: Laminate or penetrate? Part 1: Penetrating keratoplasty. Ophthalmologe 2009, 106, 563–569, doi:10.1007/s00347-009-1931-3.
[46]  B?hringer, D.; B?hringer, S.; Poxleitner, K.; Birnbaum, F.; Schwartzkopff, J.; Maier, P.; Sundmacher, R.; Reinhard, T. Long-term graft survival in penetrating keratoplasty: The biexponential model of chronic endothelial cell loss revisited. Cornea 2010, 29, 1113–1117, doi:10.1097/ICO.0b013e3181d21d07.
[47]  Lass, J.H.; Sugar, A.; Benetz, B.A.; Beck, R.W.; Dontchev, M.; Gal, R.L.; Kollman, C.; Gross, R.; Heck, E.; Holland, E.J.; et al. Endothelial cell density to predict endothelial graft failure after penetrating keratoplasty. AMA Arch. Ophthalmol. 2010, 128, 63–69, doi:10.1001/archophthalmol.2010.128.63.
[48]  Melles, G.R.J. Posterior lamellar keratoplasty DLEK to DSEK to DMEK. Cornea 2006, 25, 879–818, doi:10.1097/01.ico.0000243962.60392.4f.
[49]  Cursiefen, C.; Kruse, F.E. Posteriore lamell?re Keratoplastik (DSAEK). Ophthalmologe 2009, 106, 939–953. (in Geraman), doi:10.1007/s00347-009-2024-z.
[50]  Cursiefen, C.; Kruse, F.E. DMEK: Posteriore lamell?re Keratoplastiktechnik Zusammenfassung. Ophthalmologe 2010, 107, 370–376. (in Geraman), doi:10.1007/s00347-010-2155-2.
[51]  Dapena, I.; Ham, L.; Melles, G.R.J. Endothelial keratoplasty: DSEK/DSAEK or DMEK-the thinner the better? Curr. Opin. Ophthalmol. 2009, 20, 299–307, doi:10.1097/ICU.0b013e32832b8d18.
[52]  Chuo, J.Y.; Yeung, S.N.; Rocha, G. Modern corneal and refractive procedures. Expert Rev. Ophthalmol. 2011, 6, 247–266, doi:10.1586/eop.11.8.
[53]  Kook, D.; Derhartunian, V.; Bug, R.; Kohnen, T. Top-hat shaped corneal trephination for penetrating keratoplasty using the femtosecond laser: A histomorphological study. Cornea 2009, 28, 795–800, doi:10.1097/ICO.0b013e31819839c6.
[54]  Engelmann, K.; Valtink, M.; Lindemann, D.; Nitschke, M. Die Transplantation des kornealen Endothels—M?glichkeiten und Grenzen. Klin. Monbl. Augenheilkd. 2011, 228, 712–723. (in Geraman), doi:10.1055/s-0029-1245868.
[55]  Albon, J.; Tullo, A.B.; Aktar, S.; Boulton, M.E. Apoptosis in the endothelium of human corneas for transplantation. Invest. Ophthalmol. Vis. Sci. 2000, 41, 2887–2893.
[56]  Gimeno, F.L.; Lang, M.; Mehta, J.S.; Tan, D.T. Descemet’ s stripping automated endothelial keratoplasty: Past, present and future. Expert Rev. Ophthalmol. 2010, 5, 303–311, doi:10.1586/eop.10.18.
[57]  Price, M.O.; Price, F.W. Endothelial cell loss after descemet stripping with endothelial keratoplasty influencing factors and 2-year trend. Ophthalmology 2008, 115, 857–865, doi:10.1016/j.ophtha.2007.06.033.
[58]  Terry, M.A.; Chen, E.S.; Shamie, N.; Hoar, K.L.; Friend, D.J. Endothelial cell loss after Descemet’s stripping endothelial keratoplasty in a large prospective series. Ophthalmology 2008, 115, 488–496.
[59]  Price, M.O.; Gorovoy, M.; Benetz, B.A; Price, F.W.; Menegay, H.J.; Debanne, S.M.; Lass, J.H. Descemet’s stripping automated endothelial keratoplasty outcomes compared with penetrating keratoplasty from the Cornea Donor Study. Ophthalmology 2010, 117, 438–444, doi:10.1016/j.ophtha.2009.07.036.
[60]  Daneshgar, F.; Ziagharib, H. Review of posterior lamellar keratoplasty techniques. J. Transplant. Technol. Res. 2011, S2, 1–8.
[61]  Khor, W.-B.; Mehta, J.S.; Tan, D.T.-H. Descemet stripping automated endothelial keratoplasty with a graft insertion device: Surgical technique and early clinical results. Am. J. Ophthalmol. 2011, 151, 223–232, doi:10.1016/j.ajo.2010.08.027.
[62]  Bednarz, J.; Doubilei, V.; Wollnik, P.C.; Engelmann, K. Effect of three different media on serum free culture of donor corneas and isolated human corneal endothelial cells. Br. J. Ophthalmol. 2001, 85, 1416–1420, doi:10.1136/bjo.85.12.1416.
[63]  Hempel, B.; Bednarz, J.; Engelmann, K. Use of a serum-free medium for long-term storage of human corneas. Influence on endothelial cell density and corneal metabolism. Graef. Arch. Clin. Exp. 2001, 239, 801–805, doi:10.1007/s004170100364.
[64]  J?ckel, T.; Knels, L.; Valtink, M.; Funk, R.H.W.; Engelmann, K. Serum-free corneal organ culture medium (SFM) but not conventional minimal essential organ culture medium (MEM) protects human corneal endothelial cells from apoptotic and necrotic cell death. Br. J. Ophthalmol. 2011, 95, 123–130, doi:10.1136/bjo.2010.183418.
[65]  European Parliament and the Council. DIRECTIVE 2004/23/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. Europe, 2004; pp. L 102/48–L 102/58.
[66]  Pels, E.; Rijneveld, W.J. Organ culture preservation for corneal tissue. In Eye Banking; Bredehorn-Mayr, T., Duncker, G.I.W., Armitage, W.J., Eds.; Developmental Ophthalmology: Basel, Switzerland, 2009; Volume 43, pp. 31–46.
[67]  Engelmann, K.; Friedl, P. Optimization of culture conditions for human corneal endothelial cells. In Vitro Cell Dev. Biol. Anim. 1989, 25, 1065–1072, doi:10.1007/BF02624143.
[68]  Engelmann, K.; Friedl, P. Growth of human corneal endothelial cells in a serum-reduced medium. Cornea 1995, 14, 62–70.
[69]  M?ller-Pedersen, T.; Hartmann, U.; M?ller, H.J.; Ehlers, N.; Engelmann, K. Evaluation of potential organ culture media for eye banking using human donor corneas. Br. J. Ophthalmol. 2001, 85, 1075–9107, doi:10.1136/bjo.85.9.1075.
[70]  M?ller-Pedersen, T.; Hartmann, U.; Ehlers, N.; Engelmann, K. Evaluation of potential organ culture media for eye banking using a human corneal endothelial cell growth assay. Graef. Arch. Clin. Exp. 2001, 239, 778–782, doi:10.1007/s004170100354.
[71]  Gomaa, A.; Comyn, O.; Liu, C. Keratoprostheses in clinical practice—A review. Clin. Exp. Ophthalmol. 2010, 38, 211–224, doi:10.1111/j.1442-9071.2010.02231.x.
[72]  Ruberti, J.W.; Roy, A.S.; Roberts, C.J. Corneal biomechanics and biomaterials. Annu. Rev. Biomed. Eng. 2011, 13, 269–295, doi:10.1146/annurev-bioeng-070909-105243.
[73]  Dohlman, C.H.; Harissi-Dagher, M.; Khan, B.F.; Sippel, K.; Aquavella, J.V; Graney, J.M. Introduction to the use of the Boston keratoprosthesis. Expert Rev. Ophthalmol. 2006, 1, 41–48, doi:10.1586/17469899.1.1.41.
[74]  Myung, D.; Duhamel, P.-E.; Cochran, J.; Noolandi, J.; Ta, C.; Frank, C. Development of hydrogel-based keratoprostheses: A materials perspective. Biotechnol. Prog. 2009, 24, 735–741.
[75]  Hicks, C.R.; Werner, L.; Vijayasekaran, S.; Mamalis, N.; Apple, D.J. Histology of AlphaCor skirts: Evaluation of biointegration. Cornea 2005, 24, 933–940, doi:10.1097/01.ico.0000160969.50706.7f.
[76]  Duan, X.; Sheardown, H. Incorporation of cell-adhesion peptides into collagen scaffolds promotes corneal epithelial stratification. J. Biomater. Sci. Polym. Ed. 2007, 18, 701–711, doi:10.1163/156856207781034151.
[77]  Klenkler, B.J.; Griffith, M.; Becerril, C.; West-Mays, J.A.; Sheardown, H. EGF-grafted PDMS surfaces in artificial cornea applications. Biomaterials 2005, 26, 7286–7296, doi:10.1016/j.biomaterials.2005.05.045.
[78]  Choi, J.S.; Williams, J.K.; Greven, M.; Walter, K.A.; Laber, P.W.; Khang, G.; Soker, S. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials 2010, 31, 6738–6745, doi:10.1016/j.biomaterials.2010.05.020.
[79]  Ruberti, J.W.; Zieske, J.D.; Trinkaus-Randall, V. Corneal-tissue replacement. In Principles of Tissue Engineering; Lanza, R.P., Langer, R.S., Vacanti, J.P., Eds.; Elsevier Inc.: Oxford, UK, 2007; pp. 1025–1047.
[80]  Chen, K.H.; Azar, D.; Joyce, N.C. Transplantation of adult human corneal endothelium ex vivo: A morphologic study. Cornea 2001, 20, 731–737, doi:10.1097/00003226-200110000-00012.
[81]  Mimura, T.; Amano, S.; Usui, T.; Araie, M.; Ono, K.; Akihiro, H.; Yokoo, S.; Yamagami, S. Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats. Exp. Eye Res. 2004, 79, 231–237, doi:10.1016/j.exer.2004.05.001.
[82]  Engelmann, K.; Drexler, D.; B?hnke, M. Transplantation of adult human or porcine corneal endothelial cells onto human recipients in vitro. Part I: Cell culturing and transplantation procedure. Cornea 1999, 18, 199–206, doi:10.1097/00003226-199903000-00010.
[83]  Engelmann, K.; Bednarz, J.; B?hnke, M. Endothelzelltransplantation und Wachstumsverhalten des humanen kornealen Endothels. Ophthalmologe 1999, 96, 555–562. (in German), doi:10.1007/s003470050452.
[84]  Engelmann, K.; B?hnke, M.; Friedl, P. Isolation and long-term cultivation of human corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 1988, 29, 1656–1662.
[85]  Aboalchamat, B.; Engelmann, K.; B?hnke, M.; Eggli, P.; Bednarz, J. Morphological and functional analysis of immortalized human corneal endothelial cells after transplantation. Exp. Eye Res. 1999, 69, 547–553, doi:10.1006/exer.1999.0736.
[86]  Van Horn, D.L.; Sendele, D.D.; Seideman, S.; Buco, P.J. Regenerative capacity of the corneal endothelium in rabbit and cat. Invest. Ophthalmol. Vis. Sci. 1977, 16, 597–613.
[87]  Patel, S.V; Bachman, L.A.; Hann, C.R.; Bahler, C.K.; Fautsch, M.P. Human corneal endothelial cell transplantation in a human ex vivo model. Invest. Ophthalmol. Vis. Sci. 2009, 50, 2123–2131, doi:10.1167/iovs.08-2653.
[88]  Reichl, S.; Bednarz, J.; Müller-Goymann, C.C. Human corneal equivalent as cell culture model for in vitro drug permeation studies. Br. J. Ophthalmol. 2004, 88, 560–565, doi:10.1136/bjo.2003.028225.
[89]  Reichl, S.; D?hring, S.; Bednarz, J.; Müller-Goymann, C.C. Human cornea construct HCC—An alternative for in vitro permeation studies? A comparison with human donor corneas. Eur. J. Pharm. Biopharm. 2005, 60, 305–308, doi:10.1016/j.ejpb.2004.09.016.
[90]  Gomes, J.A.P.; Romano, A.; Santos, M.S.; Dua, H.S. Amniotic membrane use in ophthalmology. Curr. Opin. Ophthalmol. 2005, 16, 233–240, doi:10.1097/01.icu.0000172827.31985.3a.
[91]  Ishino, Y.; Sano, Y.; Nakamura, T.; Connon, C.J.; Rigby, H.; Fullwood, N.J.; Kinoshita, S. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest. Ophthalmol. Vis. Sci. 2004, 45, 800–806, doi:10.1167/iovs.03-0016.
[92]  Wencan, W.; Mao, Y.; Wentao, Y.; Fan, L.; Jia, Q.; Qinmei, W.; Xiangtian, Z. Using basement membrane of human amniotic membrane as a cell carrier for cultivated cat corneal endothelial cell transplantation. Curr. Eye Res. 2007, 32, 199–215, doi:10.1080/02713680601174165.
[93]  Kim, H.-J.; Ryu, Y.-H.; Ahn, J.-I.; Park, J.-K.; Kim, J.-C. Characterization of immortalized human corneal endothelial cell line using HPV 16 E6/E7 on lyophilized human amniotic membrane. Korean J. Ophthalmol. 2006, 20, 47–54, doi:10.3341/kjo.2006.20.1.47.
[94]  Lange, T.M.; Wood, T.O.; McLaughlin, B.J. Corneal endothelial cell transplantation using Descemet’s membrane as a carrier. J. Cataract. Refract. Surg. 1993, 19, 232–235, doi:10.1016/S0886-3350(13)80947-9.
[95]  Yoeruek, E.; Saygili, O.; Spitzer, M.S.; Tatar, O.; Bartz-Schmidt, K.U.; Szurman, P. Human anterior lens capsule as carrier matrix for cultivated human corneal endothelial cells. Cornea 2009, 28, 416–420, doi:10.1097/ICO.0b013e31818c2c36.
[96]  Ju, C.; Gao, L.; Wu, X.; Pang, K. A human corneal endothelium equivalent constructed with acellular porcine corneal matrix. Indian J. Med. Res. 2012, 135, 887–894.
[97]  Hashimoto, Y.; Funamoto, S.; Sasaki, S.; Honda, T.; Hattori, S.; Nam, K.; Kimura, T.; Mochizuki, M.; Fujisato, T.; Kobayashi, H.; et al. Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering. Biomaterials 2010, 31, 3941–3948, doi:10.1016/j.biomaterials.2010.01.122.
[98]  Bayyoud, T.; Thaler, S.; Hofmann, J.; Maurus, C.; Stephan, M.; Szurman, P.; Yoeruek, E. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr. Eye Res. 2012, 37, 179–186, doi:10.3109/02713683.2011.644382.
[99]  McCulley, J.P.; Maurice, D.M.; Schwartz, B.D. Comeal endothelial transplantation. Ophthalmology 1980, 87, 194–201.
[100]  Schwartz, B.D.; McCulley, J.P. Morphology of transplanted corneal endothelium derived from tissue culture. Invest. Ophthalmol. Vis. Sci. 1981, 20, 467–480.
[101]  Maurice, D.M.; James, P.M.; Schwartz, B.D. The use of cultured corneal endothelium in keratoplasty. Vis. Res. 1981, 21, 173–174, doi:10.1016/0042-6989(81)90156-5.
[102]  Watanabe, R.; Hayashi, R.; Kimura, Y.; Tanaka, Y.; Kageyama, T.; Hara, S.; Tabata, Y.; Nishida, K. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng. Part A 2011, 17, 1–8.
[103]  Koizumi, N.; Sakamoto, Y.; Okumura, N.; Okahara, N.; Tsuchiya, H.; Torii, R.; Cooper, L.J.; Ban, Y.; Tanioka, H.; Kinoshita, S. Cultivated corneal endothelial cell sheet transplantation in a primate model. Invest. Ophthalmol. Vis. Sci. 2007, 48, 4519–4526, doi:10.1167/iovs.07-0567.
[104]  Mimura, T.; Yamagami, S.; Yokoo, S.; Usui, T.; Tanaka, K.; Hattori, S.; Irie, S.; Miyata, K.; Araie, M.; Amano, S. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest. Ophthalmol. Vis. Sci. 2004, 45, 2992–2997, doi:10.1167/iovs.03-1174.
[105]  Harkin, D.G.; George, K.A.; Madden, P.W.; Schwab, I.R.; Hutmacher, D.W.; Chirila, T.V. Silk fibroin in ocular tissue reconstruction. Biomaterials 2011, 32, 2445–2458, doi:10.1016/j.biomaterials.2010.12.041.
[106]  Valtink, M.; Gruschwitz, R.; Funk, R.H.W.; Engelmann, K. Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics. Cells Tissues Organs 2008, 187, 286–294, doi:10.1159/000113406.
[107]  Madden, P.W.; Lai, J.N.X.; George, K.A.; Giovenco, T.; Harkin, D.G.; Chirila, T.V. Human corneal endothelial cell growth on a silk fibroin membrane. Biomaterials 2011, 32, 4076–4084, doi:10.1016/j.biomaterials.2010.12.034.
[108]  Griffith, M. Functional human corneal equivalents constructed from cell lines. Science 1999, 286, 2169–2172, doi:10.1126/science.286.5447.2169.
[109]  Liu, Y.; Gan, L.; Carlsson, D.J.; Fagerholm, P.; Lagali, N.; Watsky, M.A; Munger, R.; Hodge, W.G.; Priest, D.; Griffith, M. A simple, cross-linked collagen tissue substitute for corneal implantation. Invest. Ophthalmol. Vis. Sci. 2006, 47, 1869–1875, doi:10.1167/iovs.05-1339.
[110]  Liu, W.; Merrett, K.; Griffith, M.; Fagerholm, P.; Dravida, S.; Heyne, B.; Scaiano, J.C.; Watsky, M.A.; Shinozaki, N.; Lagali, N.; et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 2008, 29, 1147–1158, doi:10.1016/j.biomaterials.2007.11.011.
[111]  Griffith, M.; Jackson, W.B.; Lagali, N.; Merrett, K.; Li, F.; Fagerholm, P. Artificial corneas: A regenerative medicine approach. Eye 2009, 23, 1985–1989, doi:10.1038/eye.2008.409.
[112]  Orwin, E.J.; Hubel, A. In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix. Tissue Eng. 2000, 6, 307–320, doi:10.1089/107632700418038.
[113]  Gao, X.; Liu, W.; Han, B.; Wei, X.; Yang, C. Preparation and properties of a chitosan-based carrier of corneal endothelial cells. J. Mater. Sci. Mater. Med. 2008, 19, 3611–3619, doi:10.1007/s10856-008-3508-0.
[114]  Liang, Y.; Liu, W.; Han, B.; Yang, C.; Ma, Q.; Zhao, W.; Rong, M.; Li, H. Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. J. Mater. Sci. Mater. Med. 2011, 22, 175–183, doi:10.1007/s10856-010-4190-6.
[115]  Wang, T.-J.; Wang, I.-J.; Chen, S.; Chen, Y.-H.; Young, T.-H. The phenotypic response of bovine corneal endothelial cells on chitosan/polycaprolactone blends. Colloids Surf. B Biointerfaces 2012, 90, 236–243, doi:10.1016/j.colsurfb.2011.10.043.
[116]  Mohay, J.; Lange, T.M.; Soltau, J.B.; Wood, T.O.; McLaughlin, B.J. Transplantation of corneal endothelial cells. Cornea 1994, 13, 173–182, doi:10.1097/00003226-199403000-00011.
[117]  Hadlock, T.; Singh, S.; Vacanti, J.P.; McLaughlin, B.J. Ocular cell monolayers cultured on biodegradable substrates. Tissue Eng. 1999, 5, 187–196, doi:10.1089/ten.1999.5.187.
[118]  Wang, T.-J.; Wang, I.-J.; Chen, Y.-H.; Lu, J.-N.; Young, T.-H. Polyvinylidene fluoride for proliferation and preservation of bovine corneal endothelial cells by enhancing type IV collagen production and deposition. J. Biomed. Mater. Res. A 2012, 100, 252–260.
[119]  Matsuda, N.; Shimizu, T.; Yamato, M.; Okano, T. Tissue engineering based on cell sheet technology. Adv. Mater. Weinh. 2007, 19, 3089–3099, doi:10.1002/adma.200701978.
[120]  Ravichandran, R.; Sundarrajan, S.; Venugopal, J.R.; Mukherjee, S.; Ramakrishna, S. Advances in polymeric systems for tissue engineering and biomedical applications. Macromol. Biosci. 2012, 12, 286–311, doi:10.1002/mabi.201100325.
[121]  Kobayashi, J.; Okano, T. Fabrication of a thermoresponsive cell culture dish: A key technology for cell sheet tissue engineering. Sci. Technol. Adv. Mater. Weinh. 2010, 11, 1–12.
[122]  Canavan, H.E.; Cheng, X.; Graham, D.J.; Ratner, B.D.; Castner, D.G. Cell sheet detachment affects the extracellular matrix: A surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J. Biomed. Mater. Res. A 2005, 75, 1–13.
[123]  Canavan, H.E.; Cheng, X.; Graham, D.J.; Ratner, B.D.; Castner, D.G. A plasma-deposited surface for cell sheet engineering: Advantages over mechanical dissociation of cells. Plasma Process. Polym. 2006, 3, 516–523, doi:10.1002/ppap.200600017.
[124]  Joseph, N.; Kumar, A.P.R.; Kumary, T. Tunable stimuli-responsive polymers for cell sheet engineering. In Regenerative Medicine and Tissue Engineering—Cells and Biomaterials; Eberli, D., Ed.; InTech: Rijeka, Croatia, 2010; pp. 503–512.
[125]  Da Silva, R.M.P.; Mano, J.F.; Reis, R.L. Smart thermoresponsive coatings and surfaces for tissue engineering: Switching cell-material boundaries. Trends Biotechnol. 2007, 25, 577–583, doi:10.1016/j.tibtech.2007.08.014.
[126]  Klouda, L.; Mikos, A.G. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm. 2008, 68, 34–45, doi:10.1016/j.ejpb.2007.02.025.
[127]  De Las Heras Alarcón, C.; Pennadam, S.; Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev. 2005, 34, 276–285, doi:10.1039/b406727d.
[128]  Okano, T.; Yamada, N.; Okuhara, M.; Sakai, H.; Sakurai, Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 1995, 16, 297–303, doi:10.1016/0142-9612(95)93257-E.
[129]  Reed, J.A.; Lucero, A.E.; Cooperstein, M.A.; Canavan, H.E. The effects of cell culture parameters on cell release kinetics from thermoresponsive surfaces. J. Appl. Biomater. Biomech. 2008, 6, 81–88.
[130]  Cooperstein, M.A.; Canavan, H.E. Biological cell detachment from poly(N-isopropyl acrylamide) and its applications. Langmuir 2010, 26, 7695–7707, doi:10.1021/la902587p.
[131]  Yamato, M.; Okuhara, M.; Karikusaa, F.; Kikuchi, A.; Sakurai, Y.; Okano, T. Signal transduction and cytoskeletal reorganization are required for cell detachment from cell culture surfaces grafted with a temperature-responsive polymer. J. Biomed. Mater. Res. 1999, 44, 44–52, doi:10.1002/(SICI)1097-4636(199901)44:1<44::AID-JBM5>3.0.CO;2-X.
[132]  Yamato, M.; Konno, C.; Kushida, A.; Hirose, M.; Utsumi, M.; Kikuchi, A.; Okano, T. Release of adsorbed fibronectin from temperature-responsive culture surfaces requires cellular activity. Biomaterials 2000, 21, 981–986, doi:10.1016/S0142-9612(99)00239-2.
[133]  Barker, T.H. The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine. Biomaterials 2011, 32, 4211–4214, doi:10.1016/j.biomaterials.2011.02.027.
[134]  Collier, J.H.; Segura, T. Evolving the use of peptides as components of biomaterials. Biomaterials 2011, 32, 4198–4204, doi:10.1016/j.biomaterials.2011.02.030.
[135]  Takahashi, H.; Matsuzaka, N.; Nakayama, M.; Kikuchi, A.; Yamato, M.; Okano, T. Terminally functionalized thermoresponsive polymer brushes for simultaneously promoting cell adhesion and cell sheet harvest. Biomacromolecules 2012, 13, 253–260, doi:10.1021/bm201545u.
[136]  Gramm, S.; Teichmann, J.; Nitschke, M.; Gohs, U.; Eichhorn, K.-J.; Werner, C. Electron beam immobilization of functionalized poly(vinyl methyl ether) thin films on polymer surfaces—Towards stimuli responsive coatings for biomedical purposes. Express Polym. Lett. 2011, 5, 970–976, doi:10.3144/expresspolymlett.2011.95.
[137]  Ebara, M.; Yamato, M.; Aoyagi, T.; Kikuchi, A.; Sakai, K.; Okano, T. Immobilization of cell-adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng. 2004, 10, 1125–1135.
[138]  Akiyama, Y.; Kikuchi, A.; Yamato, M.; Okano, T. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 2004, 20, 5506–5511, doi:10.1021/la036139f.
[139]  Fukumori, K.; Akiyama, Y.; Kumashiro, Y.; Kobayashi, J.; Yamato, M.; Sakai, K.; Okano, T. Characterization of ultra-thin temperature-responsive polymer layer and its polymer thickness dependency on cell attachment/detachment properties. Macromol. Biosci. 2010, 10, 1117–1129, doi:10.1002/mabi.201000043.
[140]  Cole, M.A.; Voelcker, N.H.; Thissen, H.; Griesser, H.J. Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials 2009, 30, 1827–1850, doi:10.1016/j.biomaterials.2008.12.026.
[141]  Crespy, D.; Rossi, R.M. Temperature-responsive polymers with LCST in the physiological range and their applications in textiles. Polym. Int. 2007, 56, 1461–1468, doi:10.1002/pi.2277.
[142]  Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249, doi:10.1016/0079-6700(92)90023-R.
[143]  Sch?fer-Soenen, H.; Moerkerke, R.; Berghmans, H.; Koningsveld, R.; Dusek, K.; Sloc, K. Zero and off-zero critical concentrations in systems containing polydisperse polymers with very high molar masses. 2. The system water-poly(vinyl methyl ether). Macromolecules 1997, 30, 410–416, doi:10.1021/ma960114o.
[144]  Hegewald, J.; Schmidt, T.; Gohs, U.; Günther, M.; Reichelt, R.; Stiller, B.; Arndt, K.-F. Electron beam irradiation of poly(vinyl methyl ether) films: 1. Synthesis and film topography. Langmuir 2005, 21, 6073–6080, doi:10.1021/la0502589.
[145]  Hegewald, J.; Schmidt, T.; Eichhorn, K.-J.; Kretschmer, K.; Kuckling, D.; Arndt, K.-F. Electron beam irradiation of poly(vinyl methyl ether) films. 2. Temperature-dependent swelling behavior. Langmuir 2006, 22, 5152–5159, doi:10.1021/la053461c.
[146]  Mikheeva, L.M.; Grinberg, N.V; Mashkevich, A.Y.; Grinberg, V.Y.; Thi, L.; Thanh, M.; Makhaeva, E.E.; Khokhlov, A.R. Microcalorimetric study of thermal cooperative transitions in Poly (N-vinylcaprolactam) hydrogels. Macromolecules 1997, 30, 2693–2699, doi:10.1021/ma9615112.
[147]  Rzaev, Z.M.O.; Din?er, S.; Pi?kin, E. Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog. Polym. Sci. 2007, 32, 534–595, doi:10.1016/j.progpolymsci.2007.01.006.
[148]  Takezawa, T.; Mori, Y.; Yoshizato, K. Cell culture on a thermo-responsive polymer surface. Nat. Biotechnol. 1990, 8, 854–856, doi:10.1038/nbt0990-854.
[149]  Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Macromol. Rapid Commun. 1990, 11, 571–576, doi:10.1002/marc.1990.030111109.
[150]  Yamato, M.; Akiyama, Y.; Kobayashi, J.; Yang, J.; Kikuchi, A.; Okano, T. Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Prog. Polym. Sci. 2007, 32, 1123–1133, doi:10.1016/j.progpolymsci.2007.06.002.
[151]  Haraguchi, Y.; Shimizu, T.; Sasagawa, T.; Sekine, H.; Sakaguchi, K.; Kikuchi, T.; Sekine, W.; Sekiya, S.; Yamato, M.; Umezu, M.; et al. Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat. Protoc. 2012, 7, 850–858, doi:10.1038/nprot.2012.027.
[152]  Ide, T.; Nishida, K.; Yamato, M.; Sumide, T.; Utsumi, M.; Nozaki, T.; Kikuchi, A.; Okano, T.; Tano, Y. Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 2006, 27, 607–614, doi:10.1016/j.biomaterials.2005.06.005.
[153]  Sumide, T.; Nishida, K.; Yamato, M.; Ide, T.; Hayashida, Y.; Watanabe, K.; Yang, J.; Kohno, C.; Kikuchi, A.; Maeda, N.; et al. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. FASEB J. 2006, 20, 392–394.
[154]  Hsiue, G.-H.; Lai, J.-Y.; Chen, K.-H.; Hsu, W.-M. A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet. Transplantation 2006, 81, 473–476, doi:10.1097/01.tp.0000194864.13539.2c.
[155]  Lai, J.-Y.; Chen, K.-H.; Hsu, W.-M.; Hsiue, G.-H.; Lee, Y.-H. Bioengineered human corneal endothelium for transplantation. AMA Arch. Ophthalmol. 2006, 124, 1441–1448, doi:10.1001/archopht.124.10.1441.
[156]  Ebara, M.; Yamato, M.; Hirose, M.; Aoyagi, T.; Kikuchi, A.; Sakai, K.; Okano, T. Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 2003, 4, 344–349, doi:10.1021/bm025692t.
[157]  Gramm, S.; Komber, H.; Schmaljohann, D. Copolymerization kinetics of N -isopropylacrylamide and diethylene glycol monomethylether monomethacrylate determined by online NMR spectroscopy. J. Polym. Sci. Part. A Polym. Chem. 2005, 43, 142–148, doi:10.1002/pola.20514.
[158]  Nitschke, M.; Gramm, S.; G?tze, T.; Valtink, M.; Drichel, J.; Voit, B.; Engelmann, K.; Werner, C. Thermo-responsive poly(NiPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets. J. Biomed. Mater. Res. Part A 2007, 80A, 1003–1010, doi:10.1002/jbm.a.31098.
[159]  Teichmann, J.; Valtink, M.; Gramm, S.; Nitschke, M.; Werner, C.; Funk, R.H.W.; Engelmann, K. Human corneal endothelial cell sheets for transplantation: Thermo-responsive cell culture carriers to meet cell-specific requirements. Acta Biomater. 2013, 9, 5031–5039, doi:10.1016/j.actbio.2012.10.023.
[160]  Nagase, K.; Kobayashi, J.; Okano, T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering. J. R. Soc. Interface 2009, 6, S293–S309, doi:10.1098/rsif.2008.0499.focus.
[161]  Takei, Y.G.; Aoki, T.; Sanui, K.; Ogata, N.; Sakurai, Y.; Okano, T. Dynamic contact angle measurement of temperature-responsive surface properties for poly(n-isopropylacrylamide) grafted surfaces. Macromolecules 1994, 27, 6163–6166, doi:10.1021/ma00099a035.
[162]  Yakushiji, T.; Sakai, K.; Kikuchi, A.; Aoyagi, T.; Sakurai, Y.; Okano, T. Effects of cross-linked structure on temperature-responsive hydrophobic interaction of Poly(N-isopropylacrylamide) hydrogel-modified surfaces with steroids. Anal. Chem. 1999, 71, 1125–1130, doi:10.1021/ac980677t.
[163]  Mizutani, A.; Kikuchi, A.; Yamato, M.; Kanazawa, H.; Okano, T. Preparation of thermoresponsive polymer brush surfaces and their interaction with cells. Biomaterials 2008, 29, 2073–2081, doi:10.1016/j.biomaterials.2008.01.004.
[164]  Morra, M.; Cassinelli, C. Thermal recovery of cells cultured on poly(n-isopropylacrylamide) surface-grafted polystyrene dishes. In Surface Modification by Polymeric Biomaterials; Ratner, B.D., Castner, D.G., Eds.; Plenum Press: New York, NY, USA, 1997; pp. 175–181.
[165]  Biederman, H.; Osada, Y. Plasma Polymerization Processes, 1st ed. ed.; Elsevier Science: Amsterdam, The Netherlands, 1992; p. 210.
[166]  Pan, Y.V.; Wesley, R.A.; Luginbuhl, R.; Denton, D.D.; Ratner, B.D. Plasma polymerized n-isopropylacrylamide: Synthesis and characterization of a smart thermally responsive coating. Biomacromolecules 2001, 2, 32–36, doi:10.1021/bm0000642.
[167]  Chu, L.-Q.; Zou, X.-N.; Knoll, W.; F?rch, R. Thermosensitive surfaces fabricated by plasma polymerization of N,N-diethylacrylamide. Surf. Coat. Technol. 2008, 202, 2047–2051, doi:10.1016/j.surfcoat.2007.08.076.
[168]  McHerron, D.C.; Wilkes, G.L. Electron beam irradiation of polystyrene-poly(vinyl methyl ether) blends. Polymer 1993, 34, 3976–3985, doi:10.1016/0032-3861(93)90657-V.
[169]  Nitschke, M.; Zschoche, S.; Baier, A; Simon, F.; Werner, C. Low pressure plasma immobilization of thin hydrogel films on polymer surfaces. Surf. Coat. Technol. 2004, 185, 120–125, doi:10.1016/j.surfcoat.2003.12.006.
[170]  Schmaljohann, D.; Beyerlein, D.; Nitschke, M.; Werner, C. Thermo-reversible swelling of thin hydrogel films immobilized by low-pressure plasma. Langmuir 2004, 20, 10107–10114, doi:10.1021/la034653f.
[171]  He, X.-L.; Nie, P.-P.; Chen, B.-Z.; Li, X.-X.; Chen, L.; Guo, G.; Zhang, R. A novel method to fabricate thermoresponsive microstructures with improved cell attachment/detachment properties. J. Biomed. Mater. Res. A 2012, 100, 1946–1953.
[172]  Xu, F.-J.; Kang, E.-T.; Neoh, K.-G. pH- and temperature-responsive hydrogels from crosslinked triblock copolymers prepared via consecutive atom transfer radical polymerizations. Biomaterials 2006, 27, 2787–2797, doi:10.1016/j.biomaterials.2006.01.003.
[173]  Bullett, N.A.; Talib, R.A.; Short, R.D.; McArthur, S.L.; Shard, A.G. Chemical and thermo-responsive characterisation of surfaces formed by plasma polymerisation of N-Isopropyl acrylamide. Surf. Interface Anal. 2006, 38, 1109–1116, doi:10.1002/sia.2318.
[174]  Tsuda, Y.; Kikuchi, A.; Yamato, M.; Nakao, A.; Sakurai, Y.; Umezu, M.; Okano, T. The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 2005, 26, 1885–1893, doi:10.1016/j.biomaterials.2004.06.005.
[175]  Yoshikatsu Kushida, A.; Yamato, M.; Kikuchi, A.; Okano, T. Surface characterization of Poly(N-isopropylacrylamide) grafted tissue culture polystyrene by electron beam irradiation, using atomic force microscopy, and X-ray photoelectron spectroscopy. J. Nanosci. Nanotechnol. 2007, 7, 796–802, doi:10.1166/jnn.2007.509.
[176]  Cheng, X.; Canavan, H.E.; Stein, M.J.; Hull, J.R.; Kweskin, S.J.; Wagner, M.S.; Somorjai, G.A; Castner, D.G.; Ratner, B.D. Surface chemical and mechanical properties of plasma-polymerized N-isopropylacrylamide. Langmuir 2005, 21, 7833–7841, doi:10.1021/la050417o.
[177]  Yamato, M.; Konno, C.; Koike, S.; Isoi, Y.; Shimizu, T.; Kikuchi, A.; Makino, K.; Okano, T. Nanofabrication for micropatterned cell arrays by combining electron beam-irradiated polymer grafting and localized laser ablation. J. Biomed. Mater. Res. Part A 2003, 67, 1065–1071.
[178]  Cheng, X.; Canavan, H.E.; Graham, D.J.; Castner, D.G.; Ratner, B.D. Temperature dependent activity and structure of adsorbed proteins on plasma polymerized N-isopropyl acrylamide. Biointerphases 2006, 1, 61–72, doi:10.1116/1.2187980.
[179]  Canavan, H.E.; Cheng, X.; Graham, D.J.; Ratner, B.D.; Castner, D.G. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir 2005, 21, 1949–1955, doi:10.1021/la048546c.
[180]  Hatakeyama, H.; Kikuchi, A.; Yamato, M.; Okano, T. Bio-functionalized thermoresponsive interfaces facilitating cell adhesion and proliferation. Biomaterials 2006, 27, 5069–5078, doi:10.1016/j.biomaterials.2006.05.019.
[181]  Joseph, N.; Prasad, T.; Raj, V.; Kumar, A.P.R.; Sreenivasan, K.; Kumary, T.V. A cytocompatible poly(n-isopropylacrylamide-co-glycidylmethacrylate) coated surface as new substrate for corneal tissue engineering. J. Bioact. Compat. Polym. 2010, 25, 58–74, doi:10.1177/0883911509353481.
[182]  Ebara, M.; Yamato, M.; Aoyagi, T.; Kikuchi, A.; Sakai, K.; Okano, T. Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 2004, 5, 505–510, doi:10.1021/bm0343601.
[183]  Wang, X.; Mccord, M.G. Grafting of poly(n-isopropylacrylamide) onto nylon and polystyrene surfaces by atmospheric plasma treatment followed with free radical graft copolymerization. J. Appl. Polym. Sci. 2006, 104, 3614–3621, doi:10.1002/app.26081.
[184]  Anil Kumar, P.R.; Sreenivasan, K.; Kumary, T.V. Alternate method for grafting thermoresponsive polymer for transferring in vitro cell sheet structures. J. Appl. Polym. Sci. 2007, 105, 2245–2251, doi:10.1002/app.26221.
[185]  Kooij, E.S.; Sui, X.; Hempenius, M.A.; Zandvliet, H.J.W.; Vancso, G.J. Probing the thermal collapse of poly(n-isopropylacrylamide) grafts by quantitative in situ ellipsometry. J. Phys. Chem. A B 2012, 116, 9261–9268.
[186]  Schmaljohann, D.; Nitschke, M.; Schulze, R.; Eing, A.; Werner, C.; Eichhorn, K.-J. In situ study of the thermoresponsive behavior of micropatterned hydrogel films by imaging ellipsometry. Langmuir 2005, 21, 2317–2322, doi:10.1021/la0476128.
[187]  Cordeiro, A.L.; Zimmermann, R.; Gramm, S.; Nitschke, M.; Janke, A.; Sch?fer, N.; Grundke, K.; Werner, C. Temperature dependent physicochemical properties of poly(n-isopropylacrylamide-co-N-(1-phenylethyl)acrylamide) thin films. Soft Matter 2009, 5, 1367–1377, doi:10.1039/b816911j.
[188]  Kurkuri, M.D.; Nussio, M.R.; Deslandes, A.; Voelcker, N.H. Thermosensitive copolymer coatings with enhanced wettability switching. Langmuir 2008, 24, 4238–4244, doi:10.1021/la703668s.
[189]  Matzelle, T.R.; Ivanov, D.A.; Landwehr, D.; Heinrich, L.A.; Herkt-Bruns, C.; Reichelt, R.; Kruse, N. Micromechanical properties of “Smart” gels: Studies by scanning force and scanning electron microscopy of PNIPAAm. J. Phys. Chem. A B 2002, 106, 2861–2866, doi:10.1021/jp0128426.
[190]  Matzelle, T.R.; Geuskens, G.; Kruse, N. Elastic properties of poly(n-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy. Macromolecules 2003, 36, 2926–2931, doi:10.1021/ma021719p.
[191]  Jhon, Y.K.; Bhat, R.R.; Jeong, C.; Rojas, O.J.; Szleifer, I.; Genzer, J. Salt-induced depression of lower critical solution temperature in a surface-grafted neutral thermoresponsive polymer. Macromol. Rapid Commun. 2006, 27, 697–701, doi:10.1002/marc.200600031.
[192]  Alf, M.E.; Hatton, T.A.; Gleason, K.K. Novel N-isopropylacrylamide based polymer architecture for faster LCST transition kinetics. Polymer 2011, 52, 4429–4434, doi:10.1016/j.polymer.2011.07.051.
[193]  Alf, M.E.; Hatton, T.A.; Gleason, K.K. Insights into thin, thermally responsive polymer layers through quartz crystal microbalance with dissipation. Langmuir 2011, 27, 10691–10698, doi:10.1021/la201935r.
[194]  Yang, J.; Yamato, M.; Shimizu, T.; Sekine, H.; Ohashi, K.; Kanzaki, M.; Ohki, T.; Nishida, K.; Okano, T. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 2007, 28, 5033–5043, doi:10.1016/j.biomaterials.2007.07.052.
[195]  Asakawa, N.; Shimizu, T.; Tsuda, Y.; Sekiya, S.; Sasagawa, T.; Yamato, M.; Fukai, F.; Okano, T. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials 2010, 31, 3903–3909, doi:10.1016/j.biomaterials.2010.01.105.
[196]  Sasagawa, T.; Shimizu, T.; Sekiya, S.; Haraguchi, Y.; Yamato, M.; Sawa, Y.; Okano, T. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials 2010, 31, 1646–1654, doi:10.1016/j.biomaterials.2009.11.036.
[197]  Tsuda, Y.; Shimizu, T.; Yamato, M.; Kikuchi, A.; Sasagawa, T.; Sekiya, S.; Kobayashi, J.; Chen, G.; Okano, T. Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials 2007, 28, 4939–4946, doi:10.1016/j.biomaterials.2007.08.002.
[198]  Tsuda, Y.; Kikuchi, A.; Yamato, M.; Chen, G.; Okano, T. Heterotypic cell interactions on a dually patterned surface. Biochem. Biophys. Res. Commun. 2006, 348, 937–944, doi:10.1016/j.bbrc.2006.07.138.
[199]  Elloumi Hannachi, I.; Itoga, K.; Kumashiro, Y.; Kobayashi, J.; Yamato, M.; Okano, T. Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials 2009, 30, 5427–5432, doi:10.1016/j.biomaterials.2009.06.033.
[200]  Jun, I.; Kim, S.J.; Lee, J.-H.; Lee, Y.J.; Shin, Y.M.; Choi, E.; Park, K.M.; Park, J.; Park, K.D.; Shin, H. Transfer printing of cell layers with an anisotropic extracellular matrix assembly using cell-interactive and thermosensitive hydrogels. Adv. Funct. Mater. 2012, 22, 4060–4069, doi:10.1002/adfm.201200667.
[201]  Yang, J.; Yamato, M.; Kohno, C.; Nishimoto, A.; Sekine, H.; Fukai, F.; Okano, T. Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials 2005, 26, 6415–6422, doi:10.1016/j.biomaterials.2005.04.061.
[202]  Yamato, M.; Sj?qvist, S. Basic Considerations with cell sheets. In Tissue Engineering in Regenerative Medicine; Bernstein, H.S., Ed.; Humana Press: New York, NY, USA, 2011; pp. 143–160.
[203]  Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Yamamoto, K.; Adachi, E.; Nagai, S.; Kikuchi, A.; Maeda, N.; Watanabe, H.; et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 2004, 351, 1187–1196, doi:10.1056/NEJMoa040455.
[204]  Lai, J.-Y.; Hsiue, G.-H. Functional biomedical polymers for corneal regenerative medicine. React. Funct. Polym. 2007, 67, 1284–1291, doi:10.1016/j.reactfunctpolym.2007.07.060.
[205]  G?tze, T.; Valtink, M.; Nitschke, M.; Gramm, S.; Hanke, T.; Engelmann, K.; Werner, C. Cultivation of an immortalized human corneal endothelial cell population and two distinct clonal subpopulations on thermo-responsive carriers. Graef. Arch. Clin. Exp. 2008, 246, 1575–1583, doi:10.1007/s00417-008-0904-6.
[206]  Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Maeda, N.; Watanabe, H.; Yamamoto, K.; Nagai, S.; Kikuchi, A.; Tano, Y.; et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 2004, 77, 379–385, doi:10.1097/01.TP.0000110320.45678.30.
[207]  Lai, J.-Y.; Lu, P.-L.; Chen, K.-H.; Tabata, Y.; Hsiue, G.-H. Effect of charge and molecular weight on the functionality of gelatin carriers for corneal endothelial cell therapy. Biomacromolecules 2006, 7, 1836–1844, doi:10.1021/bm0601575.
[208]  Lai, J.-Y.; Li, Y.-T. Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules 2010, 11, 1387–1397, doi:10.1021/bm100213f.
[209]  Lai, J.-Y.; Ma, D.H.-K.; Lai, M.-H.; Li, Y.-T.; Chang, R.-J.; Chen, L.-M. Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: Biopolymer concentration effect. PloS One 2013, 8, 1–12.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133