All Title Author
Keywords Abstract


Cloning and Polymorphisms of Yak Lactate Dehydrogenase b Gene

DOI: 10.3390/ijms140611994

Keywords: Bos grunniens, lactate dehydrogenase, polymorphism, hypoxic adaptation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The main objective of this work was to study the unique polymorphisms of the lactate dehydrogenase-1 (LDH1) gene in yak ( Bos grunniens). Native polyacrylamide gel electrophoresis revealed three phenotypes of LDH1 (a tetramer of H subunit) in yak heart and longissimus muscle extracts. The corresponding gene, ldhb, encoding H subunits of three LDH1 phenotypes was obtained by RT-PCR. A total of six nucleotide differences were detected in yak ldhb compared with that of cattle, of which five mutations cause amino acid substitutions. Sequence analysis shows that the G896A and C689A, mutations of ldhb gene, result in alterations of differently charged amino acids, and create the three phenotypes (F, M, and S) of yak LDH1. Molecular modeling of the H subunit of LDH indicates that the substituted amino acids are not located within NAD + or substrate binding sites. PCR-RFLP examination of G896A mutation demonstrated that most LDH1-F samples are actually heterozygote at this site. These results help to elucidate the molecular basis and genetic characteristic of the three unique LDH1 phenotypes in yak.

References

[1]  Wiener, G.; Han, J.L.; Long, R.J. The Yak, 2nd ed. ed.; The Regional Office for Asia and the Pacific of the Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 2003.
[2]  Markert, C.L. Biochemistry and function of lactate dehydrogenase. Cell Biochem. Funct 1984, 2, 131–134.
[3]  Li, S.S. Lactate dehydrogenase isoenzymes A (muscle), B (heart) and C (testis) of mammals and the genes coding for these enzymes. Biochem. Soc. Trans 1989, 17, 304–307.
[4]  Sheafor, B.A. Metabolic enzyme activities across an altitudinal gradient: an examination of pikas (genus Ochotona). J. Exp. Biol 2003, 206, 1241–1249.
[5]  Amano, T.; Yamado, W.; Nabika, T.; Zhang, X.L. Blood protein polymorphisms of Tibetan native cattle, yaks and their hybrid. Rep. Soc. Res. Nativ. Livest 1990, 13, 1–11.
[6]  Zheng, Y.C.; Zhao, X.B.; Zhou, J.; Piao, Y.; Jin, S.Y.; He, Q.H.; Hong, J.; Li, N.; Wu, C.X. Identification of yak lactate dehydrogenase B gene variants by gene cloning. Sci. China Life Sci 2008, 51, 431–434.
[7]  Hoppeler, H.; Vogt, M.; Weibel, E.R.; Flück, M. Response of skeletal muscle mitochondria to hypoxia. Exp. Physiol 2003, 88, 109–119.
[8]  Lin, Y.Q.; Wang, G.S.; Feng, J.; Huang, J.Q.; Xu, Y.O.; Jin, S.Y.; Li, Y.P.; Jiang, Z.R.; Zheng, Y.C. Comparison of enzyme activities and gene expression profiling between yak and bovine skeletal muscles. Livest. Sci 2011, 135, 93–97.
[9]  Kuang, L.D.; Zheng, Y.C.; Lin, Y.Q.; Xu, Y.O.; Jin, S.Y.; Li, Y.P.; Dong, F.; Jiang, Z.R. Studies on high altitude adaptation of yak based on genetic variants and activity of lactate dehydrogenase-1. Biochem. Genet 2010, 48, 418–427.
[10]  Zhang, L.; Ma, B.; Wu, J.; Fei, C.; Yang, L.; Wan, H. Cloning and characterization of the yak gene coding for calpastatin and in silico analysis of its putative product. Acta Biochim. Pol 2010, 57, 35–41.
[11]  Bai, W.L.; Yin, R.H.; Zheng, Y.C.; Ma, Z.J.; Zhong, J.C.; Rin, R.L.; Dou, Q.L.; Zhang, S.C.; Luo, G.B.; Zhao, Z.H. Cloning and molecular characterization of a yak α-lactalbumin cDNA from mammary tissue. Livest. Sci 2010, 129, 122–128.
[12]  Scheinfeldt, L.B.; Tishkoff, S.A. Living the high life: High-altitude adaptation. Genome Biol 2010, doi:10.1186/gb-2010-11-9-133.
[13]  Avivi, A.; Gerlach, F.; Joel, A.; Reuss, S.; Burmester, T.; Nevo, E.; Hankeln, T. Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc. Natl. Acad. Sci. USA 2010, 107, 21570–21575.
[14]  Vogt, M.; Puntschart, A.; Geiser, J.; Zuleger, C.; Billeter, R.; Hoppeler, H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J. Appl. Physiol 2001, 91, 173–182.
[15]  Natarajan, R.; Fisher, B.J.; Fowler, A.A., III. Regulation of hypoxia inducible factor-1 by nitric oxide in contrast to hypoxia in microvascular endothelium. FEBS Lett 2003, 549, 99–104.
[16]  Beall, C.M. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc. Natl. Acad. Sci. USA 2007, 104, S8655–S8660.
[17]  Gelfi, C.; de Palma, S.; Ripamonti, M.; Wait, R.; Eberini, I.; Bajracharya, A.; Marconi, C.; Schneider, A.; Hoppeler, H.; Cerretelli, P. New aspects of altitude adaptation in Tibetans: A proteomic approach. FASEB J 2004, 18, 612–614.
[18]  Jurie, C.; Ortigues-Marty, I.; Picard, B.; Micol, D.; Hocquette, J.F. The separate effects of the nature of diet and grazing mobility on metabolic potential of muscles from Charolais steers. Livest. Sci 2006, 104, 182–192.
[19]  Dietz, A.A.; Lubrano, T. Separation and quantitation of lactic dehydrogenase isoenzymes by disc electrophoresis. Anal. Biochem 1967, 20, 246–257.
[20]  ExPASy SIB Bioinformatics Resource Portal. Available online: http://www.expasy.org (accessed on 25 July 2012).
[21]  Amills, M.; Francino, O.; Jansa, M.; Sanchez, A. Isolation of genomic DNA from milk samples by using Chelex resin. J. Dairy Res 1997, 64, 231–238.
[22]  Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006, 22, 195–201.
[23]  Kiefer, F.; Arnold, K.; Künzli, M.; Bordoli, L.; Schwede, T. The SWISS-MODEL repository and associated resources. Nucleic Acids Res 2009, 37, D387–D392.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal