All Title Author
Keywords Abstract


In Vitro Corrosion and Cytocompatibility of ZK60 Magnesium Alloy Coated with Hydroxyapatite by a Simple Chemical Conversion Process for Orthopedic Applications

DOI: 10.3390/ijms141223614

Keywords: magnesium, hydroxyapatite, coating, corrosion, biocompatibility

Full-Text   Cite this paper   Add to My Lib

Abstract:

Magnesium and its alloys—a new class of degradable metallic biomaterials—are being increasingly investigated as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. However, the high corrosion rate in physiological environments prevents the clinical application of Mg-based materials. Therefore, the objective of this study was to develop a hydroxyapatite (HA) coating on ZK60 magnesium alloy substrates to mediate the rapid degradation of Mg while improving its cytocompatibility for orthopedic applications. A simple chemical conversion process was applied to prepare HA coating on ZK60 magnesium alloy. Surface morphology, elemental compositions, and crystal structures were characterized using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, respectively. The corrosion properties of samples were investigated by immersion test and electrochemical test. Murine fibroblast L-929 cells were harvested and cultured with coated and non-coated ZK60 samples to determine cytocompatibility. The degradation results suggested that the HA coatings decreased the degradation of ZK60 alloy. No significant deterioration in compression strength was observed for all the uncoated and coated samples after 2 and 4 weeks’ immersion in simulated body fluid (SBF). Cytotoxicity test indicated that the coatings, especially HA coating, improved cytocompatibility of ZK60 alloy for L929 cells.

References

[1]  Allen, M.; Myer, B.; Millet, P.; Rushton, N. The effects of particulate cobalt, chromium and cobalt-chromium alloy on human osteoblast-like cellsin vitro. J. Bone Joint Surg. 1997, 79-B, 475–482.
[2]  Puleo, D.A.; Huh, W.W. Acute toxicity of metal ions in cultures of osteogenic cells derived from bone marrow stromal cells. J. Appl. Biomater 1995, 6, 109–116.
[3]  Bi, Y.; van de Motter, R.; Ragab, A.; Goldberg, V.; Anderson, J.; Greenfield, E. Titanium particles stimulate bone resorption by inducing differentiation of murine osteoclasts. J. Biomed. Mater. Res 2001, 83, 501–508.
[4]  Jacobs, J.; Hallab, J.A.; Skipor, R. Metal degradation products: A cause for concern in metal-metal bearings? Urban Clin. Ortho. Rel. Res 2003, 417, 139–147.
[5]  Nagels, J.; Stokdijk, M.; Rozing, P. Stress shielding and bone resorption in shoulder arthroplasty. J. Shoulder Elbow Surg 2003, 12, 35–39.
[6]  Park, J.B.; Kim, Y.K. Biomaterials: Principles and Applications; Park, J.B., Bronzino, J.D., Eds.; CRC Press: Boca Raton, FL. USA, 2002.
[7]  Zartner, P.; Cesnjevar, R.; Singer, H.; Weyand, M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter. Cardiovasc. Interv 2005, 66, 590–594.
[8]  Hanawa, T. Metal ion release from metal implants. J. Artif. Organs 2009, 12, 73–79.
[9]  Erne, P.; Schier, M.; Resink, T.J. The road to bioabsorbable stents: Reaching clinical reality? Cardiovasc. Intervent. Radiol 2006, 29, 11–16.
[10]  Kirkland, N.T.; Birbilis, N.; Staiger, M.P. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater 2012, 8, 925–936.
[11]  Witte, F.; Kaese, V.; Haferkamp, H.; Switzer, E.; Meyer-Lindenberg, A.; Wirth, C.J.; Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005, 26, 3557–3563.
[12]  Howlett, C.; Zreiqat, H.; O’Dell, R.; Noorman, J.; Evans, P.; Dalton, B.; Mcfarland, C.; Steele, J. The effect of magnesium ion implantation into alumina upon the adhesion of human bone derived cells. J. Mater. Sci. Mater. Med 1994, 5, 715–722.
[13]  Serre, C.M.; Papillard, M.; Chavassieux, P.; Voegel, J.C.; Boivin, G. Influence of magnesium substitution on a collagen–apatite biomaterial on the production of a calcifying matrix by human osteoblasts. J. Biomed. Mater. Res 1998, 42, 626–633.
[14]  Zreiqat, H.; Howlett, C.; Zannettino, A.; Evans, P.; Schulze-tanzil, G.; Knabe, C.; Shakibaei, M. Mechanisms of magnesium—Stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res 2002, 62, 175–184.
[15]  Yamasaki, Y.; Yoshida, Y.; Okazaki, M.; Shimazu, A.; Uchida, T.; Kubo, T.; Akagawa, Y.; Hamada, Y.; Takahashi, J.; Matsura, N. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J. Biomed. Mater. Res 2002, 62, 99–105.
[16]  Cai, Y.L.; Zhang, J.J.; Zhang, S.; Venkatraman, S.S.; Zeng, X.T.; Du, H.J.; Mondal, D. Osteoblastic cell response on fluoridated hydroxyapatite coatings: The effect of magnesium incorporation. Biomed. Mater 2010, doi:10.1088/1748-6041/5/5/054114.
[17]  Witte, F.; Fischer, J.; Nellesen, J.; Crostack, H.A.; Kaese, V.; Pisch, A.; Beckmann, F.; Windhagen, H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006, 27, 1013–1018.
[18]  Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater 2010, 6, 1680–1692.
[19]  Inoue, H.; Sugahara, K.; Yamamoto, A.; Tsubakino, H. Corrosion rate of magnesium and its alloys in buffered chloride solutions. Corros. Sci 2002, 44, 603–610.
[20]  Kuwahara, H.; Mazaki, N.; Mabuchi, M.; Wein, C.; Aizawa, T. Behavior of magnesium in Hank’s solution aimed to trabecular pattern of natural bone. Mater. Sci. Forum 2003, 419–422, 1007–1012.
[21]  Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734.
[22]  Desai, T.R.; Bhaduri, S.B.; Tas, A.C. A self-setting, monetite (CaHPO4) cement for skeletal repair. Ceram. Eng. Sci. Proc 2008, 27, 61–69.
[23]  Dumelie, N.; Benhayoune, H.; Richard, D.; Laurent-Maquin, D.; Balossier, G. In vitro precipitation of electrodeposited calcium-deficient hydroxyapatite coatings on Ti6Al4V substrate. Mater. Charact 2008, 59, 129–133.
[24]  Manso, M.; Jiménez, C.C. Electrodeposition of hydroxyapatite coatings in basic conditions. Moranta Biomater 2000, 21, 1755–1761.
[25]  Kuo, M.C.; Yen, S.K. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng. C 2002, 20, 153–160.
[26]  Ou, C.; Lu, W.; Zhan, Z.; Huang, P.; Yan, P.; Yan, B.; Chen, M. Effect of Ca and P ion concentrations on the structural and corrosion properties of biomimetic Ca-P coatings on ZK60 magnesium alloy. Int. J. Electrochem. Sci 2013, 8, 9518–9530.
[27]  Lu, W.; Chen, Z.; Huang, P.; Yan, P.; Yan, B. Microstructure, corrosion resistance and biocompatibility of biomimetic HA-Based Ca-P coatings on ZK60 magnesium alloy. Int. J. Electrochem. Sci 2012, 7, 12668–12679.
[28]  Li, K.; Wang, B.; Yan, B.; Lu, W. Preparing Ca-P coating on biodegradable magnesium alloy by hydrothermal method: In vitro degradation behaviour. Chin. Sci. Bull 2012, 57, 2319–2322.
[29]  Li, K.; Wang, B.; Chai, J.; Yan, B.; Lu, W. Electrochemical behaviour and cytocompatibility of nano-fluoridated apatite coating on biodegradable magnesium alloy by simple chemical conversion. Sci. China Tech. Sci 2013, 56, 80–83.
[30]  Chen, X.B.; Birbilis, N.; Abbott, T.B. A simple route towards a hydroxyapatite-Mg(OH)2 conversion coating for magnesium. Corros. Sci 2011, 53, 2263–2268.
[31]  Song, Y.W.; Shan, D.Y.; Han, E.H. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater. Lett 2008, 62, 3276–3279.
[32]  Song, Y.; Zhang, S.X.; Li, J.N.; Zhao, C.L.; Zhang, X.N. Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behaviour. Acta Biomater 2010, 6, 1736–1742.
[33]  Kannan, M.B.; Orr, L. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy. Biomed. Mater 2011, 6, 045003:1–045003:11.
[34]  Wen, C.L.; Guan, S.K.; Peng, L.; Ren, C.X.; Wang, X.; Hu, Z.H. Characterization, degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Appl. Surf. Sci 2009, 255, 6433–6438.
[35]  Suhanec, W.; Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res 1998, 13, 94–117.
[36]  Park, J.H.; Lee, Y.K.; Kim, K.M. Bioactive calcium phosphate coating prepared on H2O2-treated titanium substrate by electrodeposition. Surf. Coat. Technol 2005, 195, 252–257.
[37]  Viswanath, B.; Ravishankar, N. Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone. Biomaterials 2008, 29, 4855–4863.
[38]  Yang, C.X.; Yuan, G.Y.; Zhang, J.; Tang, Z.; Zhang, X.L.; Dai, K.R. Effects of magnesium alloys extracts on adult human bone marrow-derived stromal cell viability and osteogenic differentiation. Biomed. Mater 2010, doi:10.1088/1748-6041/5/4/045005.
[39]  Geng, F.; Tan, L.L.; Jin, X.X.; Yang, J.Y.; Yang, K. The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium. J. Mater. Sci. Mater. Med 2009, 20, 1149–1157.
[40]  Huan, Z.G.; Leeflang, M.A.; Zhou, J.; Fratila-Apachitei, L.E.; Duszczyk, J. In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys. J. Mater. Sci. Mater. Med 2010, 21, 2623–2635.
[41]  Stephan, G.; Paul, W.B. The low temperature formation of octacalcium phosphate. J. Cryst. Growth 1993, 132, 215–225.
[42]  Grover, L.M.; Knowles, J.C.; Fleming, G.J.P.; Barralet, J.E. In vitro ageing of brushite calcium phosphate cement. Biomaterials 2003, 24, 4133–4141.
[43]  Wang, Y.; Wei, M.; Gao, J.C. Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating. Mater. Sci. Eng. C 2009, 29, 1311–1316.
[44]  Kannan, M.B.; Raman, R.K.S. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials 2008, 29, 2306–2314.
[45]  Pebere, N.; Riera, C.; Dabosi, F. Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy. Electrochim. Acta 1990, 35, 555–561.
[46]  Song, G.L. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci 2007, 49, 1696–1701.

Full-Text

comments powered by Disqus