All Title Author
Keywords Abstract

Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy

DOI: 10.3390/ijerph10094390

Keywords: biomass, animal wastes, anaerobic digestion, biodigester, public health

Full-Text   Cite this paper   Add to My Lib


With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.


[1]  Federal Energy Management Program. Biomass Energy-Focus on Wood Waste. In Biomass and Alternative Methane Fuels; BAMF Fact Sheet: Oak Ridge, TN, USA, 2004.
[2]  Wilkie, A.C. Biomethane from Biomass, Biowaste and Biofuels. In Bionergy; Wall, J.D., Harwood, C.S., Deamin, A.L., Eds.; ASM Press: Washingston, DC, USA, 2008; pp. 195–215.
[3]  Uzodinma, E.O.; Ofoefule, A.U.; Eze, J.I.; Mbaeyi, I.; Onwuka, N.D. Effect of some organic wastes on the biogas yield from carbonated soft drink sludge. Sci. Res. Essays 2008, 3, 401–405.
[4]  Mukumba, P.; Makaka, G.; Mamphweli, S.; Simon, M.; Meyer, E. An insight into the status of biogas digesters technologies in South Africa with reference to the Eastern Cape Province. Fort Hare Pap. 2012, 19, 5–29.
[5]  Karakashev, D.; Batstone, D.J.; Angelidaki, I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 2005, 71, 331–338, doi:10.1128/AEM.71.1.331-338.2005.
[6]  Kr?ber, M.; Bekel, T.; Diaz, N.N.; Goesmann, A.; Jaenicke, S.; Krause, L.; Miller, D.; Runte, K.J.; Vieh?ver, P.; Pühler, A.; et al. Phylognetic characterization of a biogas plant microbial community integrating clone library 16S rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J. Biotechnol. 2009, 142, 38–49, doi:10.1016/j.jbiotec.2009.02.010.
[7]  Li, J.; Jha, A.K.; He, J.; Ban, Q.; Chang, S.; Wang, P. Assessment of the effects of dry anaerobic co-digestion of cow dung with waste water sludge on biogas yield and biodegradability. Int. J. Phys. Sci. 2011, 6, 3679–3688.
[8]  Anunputtikul, W.; Rodtong, S. Laboratory Scale Experiments for Biogas Production from Cassava Tubers. In Proceedings of the Joint International Conference on “Sustainable Energy and Environment (SEE)”, Hua Hin, Thailand, 1–3 December 2004. (); pp. 238–243.
[9]  Sakar, S.; Yetilmezsoy, K.; Kocak, E. Anaerobic digestion technology in poultry and livestock waste treatment. Waste Manag. Res. 2009, 27, 3–18, doi:10.1177/0734242X07079060.
[10]  St-Pierre, B.; Wright, A.D.G. Metagenomic analysis of methanogen populations in three full- scale mesophilic anaerobic manure digesters operated on dairy farms in Vermont, USA. Bioresour. Technol. 2013, 138, 277–284, doi:10.1016/j.biortech.2013.03.188.
[11]  Wilkie, A.C. Anaerobic Digestion: Holistic Bioprocessing of Animal Manure. In Proceedings of the Animal Residuals Management Conference, Alexandria, VA, USA, 14–18 October 2000; pp. 1–12.
[12]  Brown, V.J. Biogas a bright idea for Africa. Environ. Health Perspect. 2006, 114, A300–A303, doi:10.1289/ehp.114-a300.
[13]  Liu, F.H.; Wang, S.B.; Zhang, J.S.; Zhang, J.; Yan, X.; Zhou, H.K.; Zhao, G.P.; Zhou, Z.H. The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. J. Appl. Microbiol. 2009, 106, 952–966, doi:10.1111/j.1365-2672.2008.04064.x.
[14]  Mauky, E. Biogas Use. Technologies and Trends in Germany; DBFZ, Federal Ministry of Economics and Technology, Eclareon: Berlin, Germany, 2009; pp. 1–28.
[15]  Rechberger, P. Biogas Markets and Opportunities—A European Review; Anaerobic Digestion in Ireland, Tullamore, AEBIOM: Brussels, Belgium, 2009.
[16]  Jenkins, S.R.; Armstrong, C.W.; Monti, M.M. Health Effects of Biosolids Applied to Land: Available Scientific Evidence. Virginia Department of Health, 2007. 2007. Available online: (accessed on 6 July 2013).
[17]  Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M. Impacts of waste from concentrated animal feeding operations on water quality. Environ. Health Perspect. 2007, 115, 308–312.
[18]  Carbone, S.R.; da Silva, F.M.; Tavares, C.R.G.; Dias Filho, B.P. Bacterial population of a two-phase anaerobic digestion process treating effluent of cassava starch factory. Environ. Technol. 2002, 23, 591–597, doi:10.1080/09593332308618386.
[19]  Litchfield, J.H. Salmonella Food Poisoning. In Safety of Food, 2nd ed.; Graham, C.W., Ed.; AVI Publishing: Westport, CT, USA, 1980; pp. 120–122.
[20]  Eriksson, O.; Reich, M.C.; Frostell, B.; Bjorklund, A.; Assefa, G.; Sundqvist, J.-O.; Granath, J.; Baky, A.; Thyselius, L. Municipal solid waste management from a systems perspective. J. Clean. Prod. 2005, 13, 241–252, doi:10.1016/j.jclepro.2004.02.018.
[21]  Willey, J.M.; Sherwood, L.M.; Woolverton, C. Microbial Interactions. In Prescott’s Microbiology, 8th ed. ed.; McGraw-Hill Companies Inc.: New York, USA, 2011; pp. 713–728.
[22]  Nyachoti, C.M.; Omogbenigun, F.O.; Rademacher, M.; Blank, G. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets. J. Anim. Sci. 2006, 84, 125–134.
[23]  Sepp?l?, M.; Pyykk?nen, V.; V?is?nen, A.; Rintala, J. Biomethane production from maize and liquid cow manure-effect of the share of maize, post methanation potential and digestate characteristics. Fuel 2013, 107, 209–216, doi:10.1016/j.fuel.2012.12.069.
[24]  Nwanta, J.A.; Onunkwo, J.; Ezenduka, E. Analysis of Nsukka metropolitan abattoir solid waste and its bacterial contents in south eastern Nigeria: Public health implication. Arch. Environ. Occup. Health. 2010, 65, 21–26, doi:10.1080/19338240903390263.
[25]  Ribaudo, M.; Gollehon, N.; Ailley, M.; Kaplan, J.; Johansson, R.; Agapoff, J.; Christenan, L.; Breneman, V.; Peters, M. Manure Management for Water Quality: Costs to Animal Feeding Operations of Applying Manure Nutrients to Land. In Agricultural Economic Report; No. AER-824; United States Department of Agriculture: Washington, DC, USA, 2003; p. 97.
[26]  Health Care Canada. Guidelines for Canadian Drinking Water Quality: Technical Guideline Document-Bacterial Waterborne Pathogens-Current and Emerging Organisms of Concern. Water Quality and Health Bureau, Healthy Environment and Consumer Safety Branch, Health Canada: Ottawa, ON, Canada, 2006; pp. 1–34.
[27]  Rapala, J.; Lahti, K.; Rasanen, L.A.; Esala, A.L.; Niemela, S.I.; Sivonen, K. Endotoxins associated with cyanobacteria and their removal during drinking water treatment. Water Res. 2002, 36, 2627–2635, doi:10.1016/S0043-1354(01)00478-X.
[28]  Wilkie, A.C. Anaerobic Digestion of Dairy Manure: Design and Process Considerations. In Dairy Manure Management: Treatment, Handling and Community Relations; NRAES-176; Natural Resource, Agriculture, and Engineering Service, Cornell University: Ithaca, NY, USA, 2005; pp. 301–312.
[29]  Garcia, M.L.; Angenent, L.T. Interactions between temperature and ammonia in mesophilic digesters for animal waste treatment. Water Res. 2009, 43, 2373–2382, doi:10.1016/j.watres.2009.02.036.
[30]  Rico, C.; Rico, J.L.; Muňoz, N.; Gòmez, B.; Tejero, I. Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in a pilot plant. Eng. Life Sci. 2011, 11, 476–481, doi:10.1002/elsc.201100010.
[31]  Lutge, B.; Standish, B. Assessing the potential for electricity generation from animal waste biogas on South African farms. Agrekon: Agric. Econ. Res. Policy Pract. S. Afr. 2013, 52, 1–24.
[32]  Burke, D.A. Dairy Waste Anaerobic Digestion Handbook: Options for Recovering Beneficial Products from Animal Manure; Environmental Energy Company: Olympia, WA, USA, 2001; pp. 1–51. Available online: (accessed on 6 July 2013).
[33]  Tucker, M.F. Farm digesters for small dairies in Vermont. BioCycle 2008, 49, 44.
[34]  Goodrich, P.R.P.E. Anaerobic Digester Systems for Mid-Sized Dairy Farms; The Minnesota Project: St. Paul, MN, USA, 2005; pp. 1–46.
[35]  Lozano, C.J.S.; Mendoza, M.V.; de Arango, M.C.; Monroy, E.F.C. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment. Waste Manag. 2009, 29, 704–711, doi:10.1016/j.wasman.2008.06.021.
[36]  Song, H.; Clarke, W.P.; Blackall, L.L. Concurrent microscopic observations and activity measurements of cellulose hydrolyzing and methanogenic populations during the batch anaerobic digestion of crystalline cellulose. Biotechnol. Bioeng. 2005, 91, 369–378, doi:10.1002/bit.20517.
[37]  Franke-Whittle, I.H.; Goberna, M.; Pfister, V.; Insam, H. Design and development of the anaerochip microarray for investigation of methanogenic communities. J. Microbiol. Methods 2009, 79, 279–288.
[38]  De Graaf, D.; Fendler, R. Biogas Production in Germany; Federal Environment Agency. Dessau Rosslau, Baltic Sea Region Programme. Dessau Rosslau, Baltic Sea Region Programme: Dessau-Rosslau, Germany, 2010; pp. 1–24.
[39]  Cha, G.-C.; Chung, H.-K.; Kim, D.-J. Characteristics of temperature change on the substrate degradation and bacterial population in one-phase and two-phase anaerobic digestion. Environ. Eng. Res. 2001, 6, 99–108.
[40]  Demirel, B.; Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 2008, 7, 173–190, doi:10.1007/s11157-008-9131-1.
[41]  Brioukhanov, A.L.; Netrusov, A.I.; Eggen, R.I.L. The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri. Microbiology 2006, 152, 1671–1677, doi:10.1099/mic.0.28542-0.
[42]  Keiner, A.; Leisinger, T. Oxygen sensitivity of methanogenic bacteria. Syst. Appl. Microbiol. 1983, 4, 305–312, doi:10.1016/S0723-2020(83)80017-4.
[43]  Fetzer, S.; Bak, F.; Conrad, R. Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol. Ecol. 1993, 12, 107–115, doi:10.1111/j.1574-6941.1993.tb00022.x.
[44]  Anderson, K.L.; Apolinario, E.E.; Sowers, K.R. Desiccation as a long-term survival mechanism for the archaeon Methanosarcina barkeri. Appl. Environ. Microbiol. 2012, 78, 1473–1479, doi:10.1128/AEM.06964-11.
[45]  Barber, R.D.; Ferry, J.G. Methanogenesis. Encyclopedia for Life; Nature Publishing Group: New York, NY, USA, 2001; pp. 1–8. Available online: (accessed on 5 April 2013 ).
[46]  McInerney, M.J.; Sieber, J.R.; Gunsalus, R.P. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 2009, 20, 623–632, doi:10.1016/j.copbio.2009.10.001.
[47]  Blumer-Schuette, S.E.; Kataeva, I.; Westpheling, J.; Adams, M.W.W.; Kelly, R.M. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr. Opin. Biotechnol. 2008, 19, 210–217, doi:10.1016/j.copbio.2008.04.007.
[48]  Wirth, R.; Kovács, E.; Maròti, G.; Bagi, Z.; Rakhely, G.; Kovács, K.L. Characterization of a biogas—Producing microbial community by short-read next generation DNA sequencing. Biotechnol. Biofuels 2012, 5, 41, doi:10.1186/1754-6834-5-41.
[49]  Burrell, P.C.; O’Sullivan, C.; Song, H.; Clarke, W.P.; Black-all, L.L. The identification, detection and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. Appl. Environ. Microbiol. 2004, 70, 2414–2419, doi:10.1128/AEM.70.4.2414-2419.2004.
[50]  Li, A.; Chu, Y.; Wang, X.; Ren, L.; Yu, J.; Liu, X.; Yan, J.; Zhang, L.; Wu, S.; Li, S. A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol. Biofuels 2013, 6, 3, doi:10.1186/1754-6834-6-3.
[51]  McInerney, M.J.; Struchtemeyer, C.G.; Sieber, J.; Mouttaki, H.; Stams, A.J.M.; Schnink, B.; Rohlin, L.; Gunsalus, R.P. Physiology, Ecology, Phylogeny, and Genomics of Microorganisms Capable of Syntrophic Metabolism. Ann. N. Y. Acad. Sci. 2008, 1125, 58–72.
[52]  Hori, T.; Sasaki, D.; Haruta, S.; Shigematsu, T.; Ueno, Y.; Ishii, M.; Igarashi, Y. Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase expression profiling. Microbiology 2011, 157, 1980–1989.
[53]  Siriwongrungson, V.; Zeng, R.J.; Angelidaki, I. Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Res. 2007, 41, 4202–4210.
[54]  Hattori, S.; Galushko, A.S.; Kamagata, Y.; Schink, B. Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and formation by the syntrophically acetate oxidizing bacterium Thermacetogenium phaeum. J. Bacteriol. 2005, 187, 3471–3476, doi:10.1128/JB.187.10.3471-3476.2005.
[55]  Lee, M.J.; Zinder, S.H. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 1988, 52, 124–129.
[56]  Schnürer, A.; Schink, B.; Svensson, B.H. Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogen bacterium. Int. J. Syst. Bacteriol. 1996, 46, 1145–1152.
[57]  Hattori, S.; Kamagata, Y.; Hanada, S.; Shuon, H. Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic thermophilic, syntrophic acetate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 2000, 50, 1601–1609.
[58]  Balk, M.; Weijma, J.; Stams, A.J.M. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int. J. Syst. Evol. Microbiol. 2002, 52, 1361–1368.
[59]  Westerholm, M.; Roos, S.; Schnürer, A. Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol. Lett. 2010, 309, 100–104.
[60]  Zhu, W.; Reich, C.I.; Olsen, G.J.; Giometti, C.S.; Yates, J.R. Shotgun proteomics of Methanococcus jannaschii and insights into methanogenesis. J. Proteome Res. 2004, 3, 538–548, doi:10.1021/pr034109s.
[61]  Attwood, G.T.; Kelly, W.J.; Altermann, E.H.; Leahy, S.C. Analysis of the Methanobrevibacter ruminantium draft genome: Understanding methanogen biology to inhibit their action in the rumen. Aust. J. Exp. Agric. 2007, 48, 83–88.
[62]  Ver Eecke, H.C.; Butterfield, D.A.; Huber, J.A.; Lilley, M.D.; Olson, E.J.; Roe, K.K.; Evans, L.J.; Merkel, A.Y.; Cantin, H.V.; Holden, J.F. Hydrogen limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vent. Proc. Natl. Acad. Sci. USA 2012, 109, 13674–13679, doi:10.1073/pnas.1206632109.
[63]  Brune, A. Methanogenesis in the Digestive Tracts of Insects. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.W., Ed.; Springer-Verlag: Berlin/Herdelberg, Germany, 2010; pp. 707–728.
[64]  Westerholm, M.; Levén, L.; Schnürer, A. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Appl. Environ. Microbiol. 2012, 78, 7619–7625, doi:10.1128/AEM.01637-12.
[65]  De Macario, E.C. Taxonomy of Methanogens. In Bergey’s Manual of Systematic Bacteriology, 2nd ed. ed.; Springer: New York, NY, USA, 2008.
[66]  Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.M.; Siegrist, H.; Vavilin, V.A. The IWA anaerobic digestion model No.1 (ADM1). Water Sci. Technol. 2002, 45, 65–73.
[67]  Krakat, N.; Westphal, A.; Schmidt, S.; Scherer, P. Anaerobic digestion of renewable biomass: Thermophilic temperature governs methanogen population dynamics. Appl. Environ. Microbiol. 2010, 76, 1842–1850, doi:10.1128/AEM.02397-09.
[68]  Krakat, N.; Schmidt, S.; Scherer, P. Mesophilic fermentation of renewable biomass: Does hydraulic retention time regulate methanogen diversity. Appl. Environ. Microbiol 2010, 76, 6322–6326, doi:10.1128/AEM.00927-10.
[69]  Klocke, M.; M?hnert, P.; Mundt, K.; Souidi, K.; Linke, B. Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst. Appl. Microbiol. 2007, 30, 139–151, doi:10.1016/j.syapm.2006.03.007.
[70]  Klocke, M.; Nettmann, E.; Bergmann, I.; Mundt, K.; Souidi, K.; Mumme, J.; Linke, B. Characterization of the methanogenic archaea within two-phase biogas reactor systems operated with plant biomass. Syst. Appl. Microbiol. 2008, 31, 190–205, doi:10.1016/j.syapm.2008.02.003.
[71]  Amani, T.; Nosrati, M.; Sreekrishnan, T.R. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects: A review. Environ. Rev. 2010, 18, 255–278, doi:10.1139/A10-011.
[72]  Solera, R.; Romero, L.I.; Sales, D. Determination of the microbial population in thermophilic anaerobic reactor: Comparative analysis by different counting methods. Anaerobe 2001, 7, 79–86, doi:10.1006/anae.2001.0379.
[73]  Ziganshin, A.M.; Schmidt, T.; Scholwin, F.; II’inskaya, O.N.; Harms, H.; Kleinsteuber, S. Bacteria and Archaea involved in anaerobic digestion of distillers grains with solubles. Appl. Microbiol. Biotechnol. 2011, 89, 2039–2052, doi:10.1007/s00253-010-2981-9.
[74]  Rivière, D.; Desvignes, V.; Pelletier, E.; Chaussonnerie, S.; Guermazi, S.; Weissenbach, J.; Li, T.; Camacho, P.; Sghir, A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. Int. Soc. Microb. Ecol. 2009, 3, 700–714.
[75]  Scully, C.; Collins, G.; O’Flaherty, V. Assessment of anaerobic wastewater treatment failure using terminal restriction fragment length polymorphism analysis. J. Appl. Microbiol. 2005, 99, 1463–1471, doi:10.1111/j.1365-2672.2005.02743.x.
[76]  Kataoka, N.; Tokiwa, Y.; Takeda, K. Improved technique for identification and enumeration of methanogenic bacterial colonies on roll tubes by epifluorescence microscopy. Appl. Environ. Microbiol. 1991, 57, 3671–3673.
[77]  Singh, L.S.; Mazumder, P.B. Differential approaches for studying methanogens: Methods, analysis and prospects. Assam Univ. J. Sci. Technol. 2010, 6, 123–128.
[78]  Schlüter, A.; Bekel, T.; Diaz, N.N.; Dondrup, M.; Eichenlaub, R.; Gartemann, K-H.; Krahn, I.; Krause, L.; Kr?meke, H.; Kruse, O.; et al. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analyzed by the 454-pyrosequencing technology. J. Biotechnol. 2008, 136, 77–90.
[79]  Lee, C.; Kim, J.; Shin, S.G.; Hwang, S. Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS Microbiol. Ecol. 2008, 65, 544–554, doi:10.1111/j.1574-6941.2008.00530.x.
[80]  Cirne, D.G.; Lehtom?ki, A.; Bj?rnsson, L.; Blackall, L.L. Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. J. Appl. Microbiol. 2006, 103, 516–527.
[81]  Jaenicke, S.; Ander, C.; Bekel, T.; Bisdorf, R.; Dr?ge, M.; Gartemann, K.-H.; Jüneman, S.; Kaiser, O.; Krause, L.; Tille, F.; et al. Comparative and joint analyses of two-metagenomic dataset from a biogas fermenter obtained by 454-pyrosequencing. PLoS One 2011, 6, e14519, doi:10.1371/journal.pone.0014519.
[82]  Li, M.; Cao, H.; Hong, Y.-G.; Gu, J.-D. Seasonal dynamics of anammox bacteria in estuarial sediment Mai Po nature reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. Microbes Environ. 2011, 26, 15–22, doi:10.1264/jsme2.ME10131.
[83]  Ozgun, D.; Basak, S.; Cinar, O. Current Molecular Biologic Techniques for Anaerobic Ammonium Oxidizing (Anammox) Bacteria. In Proceedings of the Sixteenth International Water Technology Conference, IWTC, Istanbul, Turkey, 7–10 May 2012; pp. 1–15.
[84]  Harhangi, H.R.; Roy, M.L.; Alen, T.V.; Hu, B.-L.; Groen, J.; Kartal, B.; Tringe, S.G.; Quan, Z.-X.; Jetten, M.S.M.; den Camp, H.J.M.O. Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Appl. Environ. Microbiol. 2012, 78, 752–758, doi:10.1128/AEM.07113-11.
[85]  Zhou, M.; McAllister, T.A.; Guan, L.L. Molecular identification of rumen methanogen: Technologies, advances and prospects. Anim. Feed Sci. Technol. 2011, 166–167, 76–86, doi:10.1016/j.anifeedsci.2011.04.005.
[86]  Lutton, P.E.; Wayne, J.M.; Sharp, R.J.; Riley, P.W. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen population in landfills. Microbiology 2002, 148, 3521–3530.
[87]  Denman, S.E.; Tomkins, N.W.; McSweeney, C.S. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol. Ecol. 2006, 62, 313–322.
[88]  Jiang, B.; Song, K.; Ren, J.; Deng, M.; Sun, F.; Zhang, X. Comparison of metagenomic samples using sequence signatures. BMC Genomics 2012, 13, 730, doi:10.1186/1471-2164-13-730.
[89]  Mashhadi, Z. Identification and Characterization of the Enzymes Involved in Biosynthesis of FAD and Tetrahydromethanopterin in Methanococcus jannaschii. Ph.D. Thesis, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA , USA. In: Doctor of philosophy Biochemistry., 30 June 2010.
[90]  Leahy, S.C.; Kelly, W.J.; Altermann, E.; Ronimus, R.S.; Yeoman, C.J.; Pacheco, D.M.; Li, D.; Kong, Z.; McTavish, S.; Sang, C.; et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emission. PLoS One 2010, 5, e8926, doi:10.1371/journal.pone.0008926.
[91]  Handelsman, J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68, 669–685, doi:10.1128/MMBR.68.4.669-685.2004.
[92]  Gilbert, J.A.; Dupont, C.L. Microbial metagenomics: Beyond the genome. Annu. Rev. Mar. Sci. 2004, 3, 347–371, doi:10.1146/annurev-marine-120709-142811.
[93]  Ilaboya, I.R.; Assekhame, F.F.; Ezugwu, M.O.; Erameh, A.A.; Omofuma, F.E. Studies on biogas generation from agricultural wastes; analysis of the effects of alkaline on gas generation. World Appl. Sci. J. 2010, 9, 537–545.
[94]  Umaňa, O.; Nikolaeva, S.; Sanchez, E.; Borja, R.; Raposo, F. Treatment of screened dairy manure by upflow anaerobic fixed bed reactors packed with waste tyre rubber and a combination of waste tyre rubber and Zeolite: Effect of the hydraulic retention time. Bioresour. Technol. 2008, 99, 7412–7417, doi:10.1016/j.biortech.2008.01.009.
[95]  Balsam, J.; Ryan, D. Anaerobic Digestion of Animal Wastes: Factors to Consider; ATTRA: Butte, MT, USA, 2006; pp. 1–10.
[96]  Cioabla, A.E.; Lonel, L.; Dumitrel, G.-A.; Popescu, F. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol. Biofuels 2012, 5, 39, doi:10.1186/1754-6834-5-39.
[97]  Choorit, W.; Wisarnwan, P. Effect of temperature on the anaerobic digestion of palm oil mill effluent. Electron. J. Biotechnol. 2007, 10, 376–385.
[98]  Saleh, M.M.A.; Mahmood, U.F. Anaerobic Digestion Technology for Industrial Waste Water Treatment. In Proceedings of the Eighth International Water Technology Conference, IWTC, Alexandria, Egypt, 26–28 March 2004; pp. 817–833.
[99]  Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; McGraw-Hill Book Co.: New York, NY, USA, 2001; p. 768.
[100]  El-Mashad, H.M.; Zeeman, G.; van Loon, W.K.P.; Bot, G.P.A.; Lettinga, G. Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour. Technol. 2004, 95, 191–201, doi:10.1016/j.biortech.2003.07.013.
[101]  Campos, E.; Palatsi, J.; Flotats, X. Co-Digestion of Pig Slurry and Organic Wastes from Food Industry. In Proceedings of the 2th International Symposium on Anaerobic Digestion of Solid Waste, Barcelona, Junio, Spain, 15–18 June 1999; pp. 192–195.
[102]  Gerardi, M.H. The Microbiology of Anaerobic Digesters; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2003; pp. 91–118.
[103]  Molinuevo-Salces, B.; García-González, M.C.; González-Fernández, C.; Cuetos, M.J.; Morán, A.; Gòmez, X. Anaerobic co-digestion of livestock wastes with vegetable processing wastes: A statistical analysis. Bioresour. Technol. 2010, 101, 9479–9485, doi:10.1016/j.biortech.2010.07.093.
[104]  Veeken, A.; Kalyuzhnyi, S.; Scharff, H.; Hamelers, B. Effect of pH and VFA on hydrolysis of organic solid waste. J. Environ. Eng. 2000, 126, 1076–1081, doi:10.1061/(ASCE)0733-9372(2000)126:12(1076).
[105]  El Hadj, T.B.; Astals, S.; Galí, A.; Mace, S.; Mata-álvarez, J. Ammonia influence in anaerobic digestion of OFMSM. Water Sci. Technol. 2009, 59, 1153–1158, doi:10.2166/wst.2009.100.
[106]  Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process. A review. bioresour. Technol. 2008, 99, 4044–4064, doi:10.1016/j.biortech.2007.01.057.
[107]  Strik, D.P.B.T.B.; Domnanovich, A.M.; Holubar, P. A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochem. 2006, 41, 1235–1238, doi:10.1016/j.procbio.2005.12.008.
[108]  Angelidaki, I.; Ahring, B.K. Thermophilic anaerobic digestion of livestock waste: The effect of ammonia. Appl. Microbiol. Biotechnol. 1993, 38, 560–564.
[109]  Bolzonella, D.; Pavan, P.; Battistoni, P.; Cecchi, F. Mesophilic anaerobic digestion of waste activated sludge: Influence of solid retention time in the wastewater treatment process. Process Biochem. 2005, 40, 1453–1460, doi:10.1016/j.procbio.2004.06.036.
[110]  Karim, K.; Hoffmann, R.; Klasson, K.T.; Al-Dahhan, M.H. Anaerobic digestion of animal waste: Effects of mode of mixing. Water Res. 2009, 39, 3597–3606.
[111]  Babaee, A.; Shayegan, J. Effects of Organic Loading Rates (OLR) on Production of Methane from Anaerobic Digestion of Vegetable Waste. In Proceedings of the World Renewable Energy Congress, Link?ping, Sweden, 8–13 May 2011; pp. 411–417.
[112]  Rincòn, B.; Travieso, L.; Sanchez, E.; Martín, M.L.A.; Martín, A.; Raposo, F.; Borja, R. The effect of organic loading rate on the anaerobic digestion of two-phase olive mill solid residue derived from fruits with low ripening index. J. Chem. Technol. Biotechnol. 2007, 82, 259–266, doi:10.1002/jctb.1663.
[113]  Rincòn, B.; Borja, R.; González, J.M.; Portillo, M.C.; Sáiz-Jiménez, C. Influence of organic loading rate and hydraulic retention time on the performance, stability, and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem. Eng. J. 2008, 40, 253–261, doi:10.1016/j.bej.2007.12.019.
[114]  Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed. ed.; Metcalf and Eddy, Inc., Tata Mcgraw-Hill Publishing Company Ltd.: New Delhi, India, 2003.
[115]  Zhang, R.; El-Mashad, H.M.; Hartman, K.; Wang, F.; Liu, G.; Choate, C.; Gamble, P. Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 2007, 98, 929–935, doi:10.1016/j.biortech.2006.02.039.
[116]  Matseh, I. Effect of Ni and Co as trace elements on digestion performance and biogas produced from the fermentation of palm oil mill effluent. Int. J. Waste Resour. 2012, 2, 16–19.
[117]  Gustavsson, J. Cobalt and Nickel Bioavailability for Biogas Formation. Ph.D. Thesis, Department of Thematic studies, University of Link?ping, Link?ping, Sweden. Water and Environmental Studies, 19 January 2012.
[118]  Pobeheim, H.; Munk, B.; Johansson, J.; Guebitz, G.M. Influence of trace elements on methane formation froma synthetic model substrate for maize silage. Bioresour. Technol. 2010, 101, 836–839, doi:10.1016/j.biortech.2009.08.076.
[119]  Facchin, V.; Cavinato, C.; Fatone, F.; Pavan, P.; Cecchi, F.; Bolzonella, D. Effect of trace element supplementation on the mesophilic anaerobic digestion of food wastes in batch trials. The influence of inoculum origin. Biochem. Eng. J. 2013, 70, 71–77, doi:10.1016/j.bej.2012.10.004.
[120]  Rojas, C.; Fang, S.; Uhlenhut, F.; Borchert, A.; Stein, I.; Schlaak, M. Stirring and biomass starter influences the anaerobic digestion of different substrates for biogas production. Eng. Life Sci. 2010, 10, 339–347, doi:10.1002/elsc.200900107.
[121]  Ghanimeh, S.; El Fadel, M.; Saikaly, P. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresour. Technol. 2012, 117, 63–71, doi:10.1016/j.biortech.2012.02.125.


comments powered by Disqus