All Title Author
Keywords Abstract

Genes  2013 

Sequencing of Bacterial Genomes: Principles and Insights into Pathogenesis and Development of Antibiotics

DOI: 10.3390/genes4040556

Keywords: genome, pathogenesis, bacteria, sequencing, antibiotics

Full-Text   Cite this paper   Add to My Lib


The impact of bacterial diseases on public health has become enormous, and is partly due to the increasing trend of antibiotic resistance displayed by bacterial pathogens. Sequencing of bacterial genomes has significantly improved our understanding about the biology of many bacterial pathogens as well as identification of novel antibiotic targets. Since the advent of genome sequencing two decades ago, about 1,800 bacterial genomes have been fully sequenced and these include important aetiological agents such as Streptococcus pneumoniae, Mycobacterium tuberculosis, Escherichia coli O157:H7, Vibrio cholerae, Clostridium difficile and Staphylococcus aureus. Very recently, there has been an explosion of bacterial genome data and is due to the development of next generation sequencing technologies, which are evolving so rapidly. Indeed, the field of microbial genomics is advancing at a very fast rate and it is difficult for researchers to be abreast with the new developments. This highlights the need for regular updates in microbial genomics through comprehensive reviews. This review paper seeks to provide an update on bacterial genome sequencing generally, and to analyze insights gained from sequencing in two areas, including bacterial pathogenesis and the development of antibiotics.


[1]  Todar, K. Todar's Online Textbook of Bacteriology; Department of Bacteriology, University of Wisconsin-Madison: Madison, WI, USA, 2006.
[2]  Tang, C.; Holden, D. Pathogen virulence genes: Implications for vaccines and drug therapy. Br. Med. Bull. 1999, 5592, 387–400.
[3]  Ribeiro, F.J.; Przybylski, D.; Yin, S.; Sharpe, T.; Gnerre, S.; Abouelleil, A.; Berlin, A.M.; Montmayeur, A.; Shea, T.P.; Walker, B.J.; et al. Finished bacterial genomes from shotgun sequence data. Genome Res. 2012, 22, 2270–2277, doi:10.1101/gr.141515.112.
[4]  Bacterial Genomes. Available online: (accessed on 11 April 2013).
[5]  Genome. Available online: (accessed on 11 April 2013).
[6]  Wu, H.-J.; Wang, H.-J.A.; Jennings, M.P. Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol. 2008, 12, 1–9, doi:10.1016/j.cbpa.2008.02.016.
[7]  Donnenberg, M.S. Pathogenic strategies of enteric bacteria. Nature 2000, 406, 768–774, doi:10.1038/35021212.
[8]  Merz, A.; So, M. Interactions of pathogenic neisseriae with epithelial cell membranes. Annu. Rev. Cell. Dev. Biol. 2000, 16, 423–457, doi:10.1146/annurev.cellbio.16.1.423.
[9]  Wilson, J.W.; Schurr, M.J.; LeBlanc, C.L.; Ramamurthy, R.; Buchanan, K.L.; Nickerson, C.A. Mechanisms of bacterial pathogenicity. Postgrad. Med. J. 2002, 78, 216–224, doi:10.1136/pmj.78.918.216.
[10]  Ortiz, P.A.; Ulloque, R.; Kihara, G.K.; Zheng, H.; Kinzy, T.G. Translation elongation factor 2 anticodon mimicry domain mutants affect fidelity and diphtheria toxin resistance. J. Biol. Chem. 2006, 281, 32639–32648.
[11]  Awasthi, S.P.; Asakura, M.; Chowdhury, N.; Neogi, S.B.; Hinenoya, A.; Golbar, H.M.; Yamate, J.; Arakawa, E.; Tada, T.; Ramamurthy, T.; Yamasaki, S. Novel cholix toxin variants, ADP-ribosylating toxins in Vibrio cholerae non-O1/non-O139 strains, and their pathogenicity. Infect. Immun. 2013, 81, 531–541, doi:10.1128/IAI.00982-12.
[12]  Klose, K.E. Regulation of virulence in Vibrio cholerae. Int. J. Med. Microbiol. 2001, 291, 81–88, doi:10.1078/1438-4221-00104.
[13]  Schiavo, G.; Benfenati, F.; Poulain, B.; Rossetto, O.; Polverino de Laureto, P.; DasGupta, B.R.; Montecucco, C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992, 359, 832–835, doi:10.1038/359832a0.
[14]  Vandenesch, F.; Lina, G.; Henry, T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: A redundant arsenal of membrane-damaging virulence factors? Fron. Cell Infect. Microbiol. 2012, 2, 12.
[15]  Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532, doi:10.1056/NEJM199808203390806.
[16]  Dinkla, K.; Sastalla, I.; Godehardt, A.W.; Janze, N.; Chhatwal, G.S.; Rohde, M.; Medina, E. Upregulation of capsule enables Streptococcus pyogenes to evade immune recognition by antigen-specific antibodies directed to the G-related alpha2-macroglobulin-binding protein GRAB located on the bacterial surface. Microbes Infect. 2007, 9, 922–931, doi:10.1016/j.micinf.2007.03.011.
[17]  Clark, S.E.; Eichelberger, K.R.; Weiser, J.N. Evasion of killing by human antibody and complement through multiple variations in the surface oligosaccharide of Haemophilus influenzae. Mol. Microbiol. 2013, 88, 603–618, doi:10.1111/mmi.12214.
[18]  Costa, T.R.; Amer, A.A.; F?llman, M.; Fahlgren, A.; Francis, M.S. Coiled-coils in the YopD translocator family: A predicted structure unique to the YopD N-terminus contributes to full virulence of Yersinia pseudotuberculosis. Infect. Genet. Evol. 2012, 12, 1729–1742, doi:10.1016/j.meegid.2012.07.016.
[19]  Montecucco, C.; Molgó, J. Botulinal neurotoxins: Revival of an old killer. Curr. Opin. Pharm. 2005, 5, 274–279, doi:10.1016/j.coph.2004.12.006.
[20]  Juhas, M.; van der Meer, J.; Gaillard, M.; Harding, R.M.; Hood, D.W.; Crook, D.W. Genomic islands: Tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 2009, 33, 376–393, doi:10.1111/j.1574-6976.2008.00136.x.
[21]  Lawrence, J.G. Common themes in the genome strategies of pathogens. Curr. Opin. Gen. Dev. 2005, 15, 1–5, doi:10.1016/j.gde.2005.09.007.
[22]  Read, T.D.; Myers, G.S.A. How bacterial genomes change. In Microbial Genomes; Fraser, C.M., Read, T.D., Nelson, K.E., Eds.; Human Press: Totowa, NJ, USA, 2004; pp. 155–173.
[23]  Wise, R. A review of the mechanism of action and resistance of antimicrobial agents. Can. Respir.J. 1999, 6, 20–22.
[24]  Fleming, A. The antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenza. Br. J. Exp. Pathol. 1929, 10, 226–236.
[25]  Newton, B.A. Mechanisms of antibiotic action. Ann. Rev. Microbiol. 1995, 19, 209–240, doi:10.1146/annurev.mi.19.100165.001233.
[26]  Walker, C.B.; Karpinia, K.; Baehni, P. Chemotherapeutics: Antibiotics and other antimicrobials. Periodontol. 2004, 36, 146–165, doi:10.1111/j.1600-0757.2004.03677.x.
[27]  Yocum, R.R.; Rasmussen, J.R.; Strominger, J.L. The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus D-alanine carboxypeptidase. J. Biol. Chem. 1980, 255, 3977–3986.
[28]  Suarez, G.; Nathans, D. Inhibition of aminoacyl tRNA binding to ribosomes by tetracycline. Biochem. Biophys. Res. Commun. 1965, 18, 743–750, doi:10.1016/0006-291X(65)90848-X.
[29]  Jayaraman, P.; Sakharkar, K.R.; Lim, C.S.; Siddiqi, M.I.; Dhillon, S.K.; Sakharkar, M.K. Hybrid-drug design targeting Pseudomonas aeruginosa dihydropteroate synthase and dihydrofolate reductase. Front. Biosci. 2013, E5, 864–882, doi:10.2741/E666.
[30]  Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433, doi:10.1128/MMBR.00016-10.
[31]  Nikaido, H. Multidrug resistance in bacteria. Ann. Rev. Biochem. 2009, 78, 119–146, doi:10.1146/annurev.biochem.78.082907.145923.
[32]  Pelaez, F. The historical delivery of antibiotics from microbial natural products-can history repeat? Biochem. Pharm. 2006, 71, 981–990.
[33]  Fernandes, P. Antibacterial discovery and development—The failure of success? Nat. Biotechnol. 2006, 24, 1497–1503, doi:10.1038/nbt1206-1497.
[34]  Andriole, V.T. The future of the quinolones. Drugs 1993, 45, 1–7, doi:10.2165/00003495-199300453-00003.
[35]  Guzman, P.E.; Romeu, A.; Garcia-Vallve, S. Completely sequenced genomes of pathogenic bacteria: A review. Enferm. Infecc. Microbiol. Clin. 2008, 26, 88–89, doi:10.1157/13115544.
[36]  Allen, T.E.; Price, N.D.; Joyce, A.R.; Palsson, B.?. Long-Range Periodic Patterns in Microbial Genomes Indicate Significant Multi-Scale Chromosomal Organization. PLoS Comput. Biol. 2006, 2, e2, doi:10.1371/journal.pcbi.0020002.
[37]  Jacob, F.; Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 1961, 3, 318–356, doi:10.1016/S0022-2836(61)80072-7.
[38]  Barnett, M.J.; Fisher, R.F.; Jones, T.; Komp, C.; Abola, A.P.; Barloy-Hubler, F.; Bowser, L.; Capela, D.; Galibert, F.; Gouzy, J.; et al. Nucleotide sequence and predicted functions of the entire Sinorhizobium. meliloti pSymA megaplasmid. Proc. Natl. Acad. Sci. USA 2001, 8, 9883–9888.
[39]  Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 1977, 74, 5463–5467, doi:10.1073/pnas.74.12.5463.
[40]  Fleischmann, R.; Adams, M.; White, O.; Clayton, R.A.; Kirkness, E.F.; Kerlavage, A.R.; Bult, C.J.; Tomb, J.F.; Dougherty, B.A.; Merrick, J.M.; et al. Whole-genome random sequencing and assembly of Haemophilus influenzae. Science 1995, 269, 496–512.
[41]  Fraser, C.M.; Fleischmann, R.D. Strategies for whole microbial genome sequencing and analysis. Electrophoresis 1997, 18, 1207–1216.
[42]  Bonetta, L. Genome sequencing in the fast lane. Nat. Methods 2006, 3, 141–147, doi:10.1038/nmeth0206-141.
[43]  Su, Z.; Ning, B.; Fang, H.; Hong, H.; Perkins, R.; Tong, W.; Shi, L. Next-generationsequencing and its applications in molecular diagnostics. Expert Rev. Mol. Diagn. 2011, 11, 333–343.
[44]  Mardis, E.R. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 2008, 9, 387–402, doi:10.1146/annurev.genom.9.081307.164359.
[45]  Shendure, J.; Porreca, G.J.; Reppas, N.B.; Lin, X.; McCutcheon, J.P.; Rosenbaum, A.M.; Wang, M.D.; Zhang, K.; Mitra, R.D.; Church, G.M. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 2005, 309, 1728–1732, doi:10.1126/science.1117389.
[46]  Quail, M.A.; Smith, M.; Coupland, P.; Otto, T.D.; Harris, S.R.; Connor, T.R.; Bertoni, A.; Swerdlow, H.P.; Gu, Y. A tale of three next generation sequencing platforms: Comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012, 13, 341, doi:10.1186/1471-2164-13-341.
[47]  Rothberg, J.M.; Hinz, W.; Rearick, T.M.; Schultz, J.; Mileski, W.; Davey, M.; Leamon, J.H.; Johnson, K.; Milgrew, M.J.; Edwards, M.; et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011, 475, 348–352, doi:10.1038/nature10242.
[48]  Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138, doi:10.1126/science.1162986.
[49]  Xu, M.; Fujita, D.; Hanagata, N. Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small 2009, 5, 2638–2649, doi:10.1002/smll.200900976.
[50]  Weinstock, G.M. Genomics and bacterial pathogenesis. Emerg. Infec. Dis. 2000, 6, 496–504, doi:10.3201/eid0605.000509.
[51]  Brinjman, F.S.L.; Fueyo, J.L. Bioinformatics and microbial pathogenesis. In Microbial Genomes; Fraser, C.M., Read, T.D., Nelson, K.E., Eds.; Humana Press: Totowa, NJ, USA, 2004; pp. 47–70.
[52]  Tettelin, H.; Masignani, V.; Cieslewicz, M.J.; Eisen, J.A.; Peterson, S.; Wessels, M.R.; Wessels, M.R.; Paulsen, I.T.; Nelson, K.E.; Margarit, I.; Read, T.D.; et al. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc. Natl. Acad. Sci. USA 2002, 99, 12391–12396, doi:10.1073/pnas.182380799.
[53]  Subramanian, G.; Mural, R.; Hoffman, S.L.; Venter, J.C.; Broder, S. Microbial disease in humans: A genomic perspective. Mol. Diagn. 2001, 6, 243–254.
[54]  Perna, N.T.; Plunkett, G.; Burland, V.; Mau, B.; Glasner, J.D.; Rose, D.J.; Mayhew, G.F.; Evans, P.S.; Gregor, J.; Kirkpatrick, H.A.; et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 2001, 409, 529–532, doi:10.1038/35054089.
[55]  Jin, Q.; Yuan, Z.; Xu, J.; Wang, Y.; Shen, Y.; Lu, W.; Wang, J.; Liu, H.; Yang, J.; Yang, F.; et al. Genome sequence of Shigella flexneri 2a: Insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acid Res. 2002, 30, 4432–4441, doi:10.1093/nar/gkf566.
[56]  Jothi, R.; Parthasarathy, S.; Ganesan, K. Comparison of the virulence factors and analysis of the strains TIGR4, D39, G54 and R6 of Streptococcus pneumonia. J. Comput. Sci. Syst. Biol. 2008, 1, 103–118, doi:10.4172/jcsb.1000010.
[57]  Nakagawa, I.; Kurokawa, K.; Yamashita, A.; Nakata, M.; Tomiyasu, Y.; Okahashi, N.; Kawabata, S.; Yamazaki, K.; Shiba, T.; Yasunaga, T.; et al. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res. 2003, 13, 1042–1055, doi:10.1101/gr.1096703.
[58]  Beres, S.B.; Carroll, R.K.; Shea, P.R.; Sitkiewicz, I.; Martinez-Gutierrez, J.C.; Low, D.E.; McGeer, A.; Willey, B.M.; Green, K.; Tyrrell, G.J.; et al. Molecular complexity of successive bacterial epidemics deconvoluted by comparative pathogenomics. Proc. Natl. Acad. Sci. USA 2010, 107, 4371–4376, doi:10.1073/pnas.0911295107.
[59]  Shea, P.R.; Beres, S.B.; Flores, A.R.; Ewbank, A.L.; Gonzalez-Lugo, J.H.; Martagon-Rosado, A.J.; Martinez-Gutierrez, J.C.; Rehman, H.A.; Serrano-Gonzalez, M.; Fittipaldi, N.; et al. Distinct signatures of diversifying selection revealed by genome analysis of respiratory tract and invasive bacterial populations. Proc. Natl. Acad. Sci. USA 2011, 108, 5039–5044, doi:10.1073/pnas.1016282108.
[60]  Donati, C.; Hiller, N.L.; Tettelin, H.; Muzzi, A.; Croucher, N.J.; Angiuoli,, S.V.; Oggioni, M.; Dunning Hotopp, J.C.; Hu, F.Z.; Riley, D.R.; et al. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol. 2010, 11, R107, doi:10.1186/gb-2010-11-10-r107.
[61]  Lieberman, T.D.; Michel, J.B.; Aingaran, M.; Potter-Bynoe, G.; Roux, D.; Davis, M.R., Jr.; Skurnik, D.; Leiby, N.; LiPuma, J.J.; Goldberg, J.B.; et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 2011, 43, 1275–1280, doi:10.1038/ng.997.
[62]  Reeves, P.R.; Liu, B.; Zhou, Z.; Li, D.; Guo, D.; Ren, Y.; Clabots, C.; Lan, R.; Johnson, J.R.; Wang, L. Rates of mutation and host transmission for an Escherichia coli clone over 3 years. PLoS One 2011, 6, e26907, doi:10.1371/journal.pone.0026907.
[63]  Okoro, C.K.; Kingsley, R.A.; Quail, M.A.; Kankwatira, A.M.; Feasey, N.A.; Parkhill, J.; Dougan, G.; Gordon, M.A. High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in recurrent invasive nontyphoidal Salmonella typhimurium disease. Clin. Infect. Dis. 2012, 54, 955–963, doi:10.1093/cid/cir1032.
[64]  Fang, G.; Munera, D.; Friedman, D.I.; Mandlik, A.; Chao, M.C.; Banerjee, O.; Feng, Z.; Losic, B.; Mahajan, M.C.; Jabado, O.J.; et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat. Biotech. 2012, 30, 1232–1239, doi:10.1038/nbt.2432.
[65]  Harris, S.R.; Feil, E.J.; Holden, M.T.; Quail, M.A.; Nickerson, E.K.; Chantratita, N.; Gardete, S.; Tavares, A.; Day, N.; Lindsay, J.A.; et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010, 327, 469–474, doi:10.1126/science.1182395.
[66]  Glass, J.I.; Belanger, A.E.; Robertson, G.T. Streptococcus pneumoniae as a genomic platform for broad spectrum antibiotic discovery. Curr. Opin. Microbiol. 2002, 5, 338–342, doi:10.1016/S0959-4388(02)90328-4.
[67]  Rosamond, J.; Allsop, A. Harnessing the Power of the Genome in the Search for New Antibiotics. Science 2000, 287, 1973–1976, doi:10.1126/science.287.5460.1973.
[68]  Gerstein, M.; Jansen, R. The current excitement in bioinformatics—Analysis of whole-genome expression data: How does it relate to protein structure and function? Curr. Opin. Struct. Biol. 2000, 10, 574–584, doi:10.1016/S0959-440X(00)00134-2.
[69]  Gerstein, M. Integrative database analysis in structural genomics. Nat. Struct. Biol. 2000, 7, 960–963, doi:10.1038/80739.
[70]  Weinstock, G.M.; Smajs, D.; Hardham, J.; Norris, S.J. From microbial sequence to applications. Res. Microbiol. 2000, 15, 151–158.
[71]  Mitchell, T.J. Streptococcus pneumoniae: Infection, inflammation and disease. Adv. Exp. Med. Biol. 2006, 582, 111–124, doi:10.1007/0-387-33026-7_10.
[72]  O'Brien, K.L.; Wolfson, L.J.; Watt, J.P.; Henkle, E.; Deloria-Knoll, M. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: Global estimates. Lancet 2009, 374, 893–902, doi:10.1016/S0140-6736(09)61204-6.
[73]  Evans, B.A.; Rozen, D.E. Significant variation in transformation frequency in Streptococcus pneumoniae. ISME J. 2013, 7, 791–799, doi:10.1038/ismej.2012.170.
[74]  Thanassi, J.A.; Hartman-Neumann, S.L.; Dougherty, T.J.; Dougherty, B.A.; Pucci, M.J. Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 2002, 30, 3152–3162.
[75]  Zalacain, M.; Biswas, S.; Ingraham, K.A.; Ambrad, J.; Bryant, A.; Chalker, A.F.; Iordanescu, S.; Fan, J.; Fan, F.; Lunsford, R.D.; et al. A global approach to identify novel broad spectrum antibacterial targets among proteins of unknown function. J. Mol. Microbiol. Biotechnol. 2004, 6, 109–126.
[76]  Song, J.H.; Ko, K.S.; Lee, J.H.; Baek, J.Y.; Oh, W.S.; Yoon, H.S.; Jeong, J.Y.; Chun, J. Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol. Cells 2005, 19, 365–374.
[77]  Freiberg, C.; Weiland, B.; Spaltmann, F.; Ehlert, K.; Br?tz, H.; Labischinski, H. Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria. J. Mol. Microbiol. Biotechnol. 2001, 3, 483–489.
[78]  Arigoni, F.; Talabot, F.; Peitsch, M.; Edgerton, M.D.; Meldrum, E.; Allet, E.; Fish, R.; Jamotte, T.; Curchod, M.L.; Loferer, H. A genome based approach for the identification of essential bacterial genes. Nat. Biotechnol. 1998, 16, 851–856, doi:10.1038/nbt0998-851.
[79]  Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Pompliano, D.L. Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 2007, 6, 29–40.
[80]  Falconer, S.B.; Brown, E.D. New screens and targets in antibacterial drug discovery. Curr. Opin. Microbiol. 2009, 12, 497–504, doi:10.1016/j.mib.2009.07.001.
[81]  Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249, doi:10.1016/S1056-8719(00)00107-6.
[82]  Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011, 24, 71–109, doi:10.1128/CMR.00030-10.
[83]  Yuan, Z.; White, R.J. The evolution of peptide deformylase as a target: Contribution of biochemistry, genetics and genomics. Biochem. Pharmacol. 2006, 71, 1042–1047.
[84]  Apfel, C.M.; Locher, H.; Evers, S.; Takacs, B.; Hubschwerlen, C.; Pirson, W.; Page, M.G.; Keck, W. Peptide deformylase as an antibacterial drug target: Target validation and resistance development. Antimicrob. Agents Chemother. 2001, 45, 1058–1064.
[85]  Margolis, P.S.; Hackbarth, C.J.; Young, D.C.; Wang, W.; Chen, D.; Yuan, Z.; Chen, D.; Yuan, Z.; White, R.; Trias, J. Peptide deformylase in Staphylococcus aureus: Resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob. Agents Chemother. 2000, 44, 1825–1831.
[86]  Zhang, H.; Wang, H.; Wang, Y.; Cui, H.; Xie, Z.; Pu, Y.; Pei, S.; Li, F.; Qin, S. Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007. FEMS Microbiol. Lett. 2012, 332, 105–112, doi:10.1111/j.1574-6968.2012.02582.x.


comments powered by Disqus

Contact Us


微信:OALib Journal