All Title Author
Keywords Abstract


Managing Emergencies Optimally Using a Random Neural Network-Based Algorithm

DOI: 10.3390/fi5040515

Keywords: rescuers, random neural network (RNN), task assignment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Emergency rescues require that first responders provide support to evacuate injured and other civilians who are obstructed by the hazards. In this case, the emergency personnel can take actions strategically in order to rescue people maximally, efficiently and quickly. The paper studies the effectiveness of a random neural network (RNN)-based task assignment algorithm involving optimally matching emergency personnel and injured civilians, so that the emergency personnel can aid trapped people to move towards evacuation exits in real-time. The evaluations are run on a decision support evacuation system using the Distributed Building Evacuation Simulator (DBES) multi-agent platform in various emergency scenarios. The simulation results indicate that the RNN-based task assignment algorithm provides a near-optimal solution to resource allocation problems, which avoids resource wastage and improves the efficiency of the emergency rescue process.

Full-Text

comments powered by Disqus