All Title Author
Keywords Abstract

Diversity  2013 

Biodiversity Indicators Show Climate Change Will Alter Vegetation in Parks and Protected Areas

DOI: 10.3390/d5020352

Keywords: biodiversity, climate change, protected areas, British Columbia, remote sensing, FPAR, Dynamic Habitat Index

Full-Text   Cite this paper   Add to My Lib


While multifaceted, a chief aim when designating parks and protected areas is to support the preservation of biological diversity, in part, through representing and conserving the full range of landscape conditions observed throughout a representative area. Parks and protected areas are, however, typically developed using a static interpretation of current biodiversity and landscape conditions. The observed and potential climate change impacts to biodiversity have created a need to also contemplate how parks and protected areas will respond to climate change and how these areas will represent the future range of landscape conditions. To assess change in biodiversity, broad-scale ecosystem information can be sourced from indirect remotely sensed indicators. Quantifying biodiversity through indirect indicators allows characterization of inter-relationships between climate and biodiversity. Such characterizations support the assessment of possible implications of climatic change, as the indicators can be generated using modeled forecasts of future climatic conditions. In this paper we model and map impacts of climate change on British Columbia’s parks and protected areas by quantifying change in a number of remotely sensed indicators of biodiversity. These indicators are based on the measured amount of incoming solar energy used by vegetation and map the overall annual energy utilization, variability (seasonality), and latent or baseline energy. We compare current conditions represented by parks and protected areas, to those forecasted in the year 2065. Our results indicate that parks and protected areas are forecasted to become more productive and less seasonal, due to increased vegetation productivity in higher elevation environments. While increased vegetation productivity may be beneficial for biodiversity overall, these changes will be particularly problematic for sensitive and specialist species. Future gaps in vegetation conditions protected by parks and protected areas are observed in the eastern edge of the Rocky Mountains and the central interior region of British Columbia. Protected areas along the Coast Mountains, Vancouver Island highlands, and the Rocky Mountains show the greatest levels of change in the biodiversity indicators, including decreasing seasonality, with the Mountain Hemlock ecozone most at risk. Examples of large parks that are predicted to experience rapid change in vegetation characteristics include Strathcona, Garabaldi, and Kitlope. Our maps of future spatial distributions of indirect biodiversity indicators fill a gap in


[1]  Barton, J.H. Biodiversity at Rio. BioScience 1992, 42, 773–776, doi:10.2307/1311996.
[2]  Aichi Biodiversity Target. Available online: (accessed on 2 March 2013).
[3]  Svancara, L.K.; Brannon, R.; Scott, J.M.; Groves, C.R.; Noss, R.F.; Pressey, R.L. Policy-Driven versus evidence-based conservation: A review of political targets and biological needs. BioScience 2005, 55, 989, doi:10.1641/0006-3568(2005)055[0989:PVECAR]2.0.CO;2.
[4]  Andrew, M.E.; Wulder, M.A.; Coops, N.C. Patterns of protection and threats along productivity gradients in Canada. Biol. Conserv. 2011, 144, 2891–2901, doi:10.1016/j.biocon.2011.08.006.
[5]  Pressey, R.L.; Cabeza, M.; Watts, M.E.; Cowling, R.M.; Wilson, K.A. Conservation planning in a changing world. Trends Ecol. Evol. 2007, 22, 583–592, doi:10.1016/j.tree.2007.10.001.
[6]  Kerr, J.T.; Deguise, I. Habitat loss and the limits to endangered species recovery. Ecol. Lett. 2004, 7, 1163–1169, doi:10.1111/j.1461-0248.2004.00676.x.
[7]  Hannah, L.; Midgley, G.F.; Sandy, A.; Araujo, M.B.; Hughes, G.; Enrique, M.-M.; Richard, P.; Paul, W. Protected area needs in a changing climate. Front. Ecol. Environ. 2007, 5, 131–138, doi:10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2.
[8]  Lemieux, C.J.; Scott, D.J. Climate change, biodiversity conservation and protected area planning in Canada. Can. Geogr./Le Geogr. Can. 2005, 49, 384–397, doi:10.1111/j.0008-3658.2005.00103.x.
[9]  Visser, M.E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. 2008, 275, 649–659, doi:10.1098/rspb.2007.0997.
[10]  Harrison, P.; Berry, P.; Butt, N.; New, M. Modelling climate change impacts on species’ distributions at the European scale: Implications for conservation policy. Environ. Sci. Policy 2006, 9, 116–128, doi:10.1016/j.envsci.2005.11.003.
[11]  Berry, P.M.; Dawson, T.P.; Harrison, P.A.; Pearson, R.G. Modelling potential impacts of climate change on the bioclimatic envelope of species in Britain and Ireland. Glob. Ecol. Biogeogr. 2002, 11, 453–462, doi:10.1111/j.1466-8238.2002.00304.x.
[12]  Midgley, G. Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biol. Conserv. 2003, 112, 87–97, doi:10.1016/S0006-3207(02)00414-7.
[13]  Halpin, P. Global climate change and natural-area protection: Management responses and research directions. Ecol. Appl. 1997, 7, 828–843, doi:10.1890/1051-0761(1997)007[0828:GCCANA]2.0.CO;2.
[14]  United Nations Environment Programme (UNEP). Decisions Adopted by the Conference of the Parties to the Convention on Biological Diversity at its Seventh Meeting; UNEP: Kuala Lumpur, Malaysia, 2004.
[15]  Environment Canada. Canadian Protected Areas Status Report; Environment Canada: Gatineau, QC, Canada, 2006.
[16]  Canadian Biodiversity Strategy. Available online: (accessed on 22 October 2010).
[17]  Iverson, L.R.; Prasad, A.M. Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol. Monogr. 1998, 68, 465–485, doi:10.1890/0012-9615(1998)068[0465:PAOTSF]2.0.CO;2.
[18]  Fussel, H.M. Adaptation planning for climate change: Concepts, assessment approaches, and key lessons. Sustain. Sci. 2007, 2, 265–275, doi:10.1007/s11625-007-0032-y.
[19]  Willis, S.G.; Hole, D.G.; Collingham, Y.C.; Hilton, G.; Rahbek, C.; Huntley, B. Assessing the impacts of future climate change on protected area networks: A method to simulate individual species’ responses. Environ. Manag. 2009, 43, 836–845.
[20]  Hannah, L.; Midgley, G.F.; Lovejoy, T.; Bond, W.J.; Bush, M.; Lovett, J.C.; Scott, D.; Woodward, F.I. Conservation of biodiversity in a changing climate. Conserv. Biol. 2002, 16, 264–268, doi:10.1046/j.1523-1739.2002.00465.x.
[21]  Hawkins, B.A.; Field, R.; Cornell, H.V.; Currie, D.; Guégan, J.F.; Kaufman, D.M.; Kerr, J.T.; Mittelbach, G.G.; Oberdorff, T.; O’Brien, E.M.; et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 2003, 84, 3105–3117, doi:10.1890/03-8006.
[22]  Araújo, M.B.; Rahbek, C. How does climate change affect biodiversity? Science 2006, 313, 1396–1397.
[23]  Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 2001, 22, 2377–2400, doi:10.1080/01431160117096.
[24]  Turner, W.; Spector, S.; Gardiner, N. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314.
[25]  Waide, R.B.; Willig, M.R.; Steiner, C.F.; Mittelbach, G.; Gough, L.; Dodson, S.I.; Juday, G.P.; Parmenter, R. The relationship between productivity and species richness. Ann. Rev. Ecol. Syst. 1999, 30, 257–300, doi:10.1146/annurev.ecolsys.30.1.257.
[26]  Latta, G.; Hailemariam, T.; Barrett, T. Mapping and imputing potential productivity of Pacific Northwest forests using climate variables. Can. J. For. Res. 2009, 39, 1197–1207, doi:10.1139/X09-046.
[27]  Running, S.W.; Hunt, E.R. Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global-Scale Models; San Diego Academic press: San Diego, MA, USA, 1993; pp. 141–158.
[28]  Shilling, F. Do habitat conservation plans protect endangered species? Science 1997, 276, 1662–1663, doi:10.1126/science.276.5319.1662.
[29]  Algar, A.C.; Kharouba, H.M.; Young, E.R.; Kerr, J.T. Predicting the future of species diversity: Macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography 2009, 32, 22–33, doi:10.1111/j.1600-0587.2009.05832.x.
[30]  Fitterer, J.L.; Nelson, T.A.; Coops, N.C.; Wulder, M.A. Modelling the ecosystem indicators of British Columbia using Earth observation data and terrain indices. Ecol. Indic. 2012, 20, 151–162.
[31]  Fontana, F.M.; Coops, N.C.; Khlopenkov, K.V.; Trishchenko, A.P.; Riffler, M.; Wulder, M.A. Generation of a novel 1km NDVI data set over Canada, the northern United States, and Greenland based on historical AVHRR data. Remote Sens. Environ. 2012, 121, 171–185.
[32]  Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Tucker, C.J. Northern hemisphere photosynthetic trends 1982–99. Glob. Change Biol. 2003, 9, 1–15, doi:10.1046/j.1365-2486.2003.00507.x.
[33]  Xiao, J.; Moody, A. Geographical distribution of global greening trends and their climatic correlates: 1982–1998. Int. J. Remote Sens. 2005, 26, 2371–2390, doi:10.1080/01431160500033682.
[34]  Waser, L.T.; Stofer, S.; Schwarz, M.; Küchler, M.; Ivits, E.; Scheidegger, C. Prediction of biodiversity—regression of lichen species richness on remote sensing data. Community Ecol. 2004, 5, 121–133, doi:10.1556/ComEc.5.2004.1.12.
[35]  Puumalainen, J.; Kennedy, P.; Folving, S. Monitoring forest biodiversity: A European perspective with reference to temperate and boreal forest zone. J. Environ. Manag. 2003, 67, 5–14, doi:10.1016/S0301-4797(02)00183-4.
[36]  Fitterer, J.L.; Nelson, T.A.; Coops, N.C.; Wulder, M.A.; Mahony, N.A. Exploring the ecological processes driving geographical patterns of breeding bird richness in British Columbia, Canada. Ecol. Appl. 2012, 20, 151–162.
[37]  Running, S.W.; Nemani, R.R. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Environ. 1988, 24, 347–367, doi:10.1016/0034-4257(88)90034-X.
[38]  Zhang, X.; Tarpley, D.; Sullivan, J.T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. 2007, 34, 1–5.
[39]  Herrmann, S.; Anyamba, A.; Tucker, C. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Change Part A 2005, 15, 394–404, doi:10.1016/j.gloenvcha.2005.08.004.
[40]  Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382.
[41]  Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560, doi:10.1126/science.1082750.
[42]  Churkina, G.; Running, S. Investigating the balance between timber harvest and productivity of global coniferous forests under global change. Clim. Change 2000, 47, 167–191, doi:10.1023/A:1005620808273.
[43]  Hall, R.J.; Raulier, F.; Price, D.T.; Arsenault, E.; Bernier, P.Y.; Case, B.S.; Guo, X. Integrating remote sensing and climate data with process-based models to map forest productivity within west-central Alberta’s boreal forest: Ecoleap-West 1. For. Chronicle 2006, 82, 159–176.
[44]  Holmes, K. Forecasting impacts of climate change on indicators of British Columbia’s Biodiversity. MSc thesis, University of Victoria, Victoria, BC, Canada, 2012.
[45]  Austin, M.A.; Buffett, D.A.; Nicolson, D.J.; Scudder, G.G.E.; Stevens, V. Taking Nature’s Pulse: The Status of Biodiversity in British Columbia; publisher: Victoria, BC, Canada, 2008; p. 268. Available online: (accessed on 5 March 2013).
[46]  Kerr, J.; Cihlar, J. Patterns and causes of species endangerment in Canada. Ecol. Appl. 2004, 14, 743–753, doi:10.1890/02-5117.
[47]  Mote, P.W.; Parson, E.A.; Hamlet, A.F.; Keeton, W.S.; Lettenmaier, D.; Mantua, N.; Miles, E.L.; Peterson, D.W.; Peterson, D.L.; Slaughter, R.; et al. Preparing for climatic change: The water, salmon, and forests of the Pacific Northwest. Clim. Change 2003, 61, 45–88, doi:10.1023/A:1026302914358.
[48]  Coops, N.C.; Wulder, M.A.; Duro, D.; Han, T.; Berry, S. The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance. Ecol. Indic. 2008, 8, 754–766, doi:10.1016/j.ecolind.2008.01.007.
[49]  Summary of the Park and Protected Areas System. BC Parks, Ministry of Environment. Available online: (accessed on 5 March 2013).
[50]  Coops, N.C.; Wulder, M.A.; Iwanicka, D. Demonstration of a satellite-based index to monitor habitat at continental-scales. Ecol. Indic. 2009, 9, 948–958, doi:10.1016/j.ecolind.2008.11.003.
[51]  Andrew, M.E.; Wulder, M.A.; Coops, N.C.; Baillargeon, G. Beta-diversity gradients of butterflies along productivity axes. Glob. Ecol. Biogeogr. 2012, 21, 352–364, doi:10.1111/j.1466-8238.2011.00676.x.
[52]  Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510, doi:10.1016/j.tree.2005.05.011.
[53]  Berry, S.; Mackey, B.; Brown, T. Potential applications of remotely sensed vegetation greenness to habitat analysis and the conservation of dispersive fauna. Pac. Conserv. Biol. 2007, 13, 120–127.
[54]  Liu, J.; Cihlar, J.; Chen, W. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. J. Geophys. Res. 1999, 104, 27735–27754, doi:10.1029/1999JD900768.
[55]  Huston, M. A general hypothesis of species diversity. Am. Soc. Nat. 1979, 113, 81–101.
[56]  Tilman, D.; Wedin, D.; Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 1996, 379, 718–720, doi:10.1038/379718a0.
[57]  Los, S.O.; Collatz, G.J.; Bounoua, L.; Sellers, P.J.; Tucker, C.J. Global interannual variations in sea surface temperature and land surface vegetation, air temperature, and precipitation. J. Clim. 2001, 14, 1535–1549, doi:10.1175/1520-0442(2001)014<1535:GIVISS>2.0.CO;2.
[58]  Shaver, G.R.; Chapin, F., III; Gartner, B.L. Factors limiting seasonal growth and peak biomass accumulation in Eriophorum. vaginatum in Alaskan tussock tundra. J. Ecol. 1986, 74, 257–278, doi:10.2307/2260362.
[59]  Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.G. Classification and Regression Trees; Wadsworth International Group: Belmont, CA, USA, 1984.
[60]  Wang, T.; Hamann, A.; Splittlehouse, D. ClimateWNA: A program to generate high-resolution climate data for climate change studies and applications in western North America. Available online: (accessed on 21 March 2011).
[61]  Murdock, T.; Bürger, G. Research Plan for Regional Climate Impacts. Pacific Climate Impacts Consortium 2010. Available online: (accessed on 21 March 2011).
[62]  Monserud, R.A.; Yang, Y.; Huang, S.; Tchebakova, N. Potential change in lodgepole pine site index and distribution under climate change in Alberta. Can. J. For. Res. 2008, 38, 343–352, doi:10.1139/X07-166.
[63]  Mote, P.; Salathé, E.; Peacock, C. Scenarios of future climate for the Pacific Northwest. Climate Impacts Group. University of Washington, 2005. 2005. Available online: (accessed on 5 March 2013).
[64]  GeoBC British Columbia Data Distribution Service. Available online: (accessed on 29 July 2012).
[65]  B.C. Ministry of Forests Biogeoclimatic Zones of British Columbia. Available online: (accessed 21 March 2011).
[66]  Ministry of Environment. Preparing for Climate Change, British Columbia’s Adaptation Strategy; Government of British Columbia: Victoria, BC, Canada, 2010. Available online: (accessed on 5 March 2013).
[67]  Lemieux, C.J.; Beechey, T.J.; Gray, P.A. Prospects for Canada’s protected areas in an era of climate change. Land Use Policy 2011, 28, 928–941, doi:10.1016/j.landusepol.2011.03.008.
[68]  Johnson, C.J.; Parker, K.L.; Heard, D.C.; Seip, D.R. Movements, foraging habits, and habitat use strategies of northern woodland caribou during winter: Implications for forest practices in British Columbia. JEM 2004, 5, 22–35.
[69]  Food and Agriculture Organization. Assessing forest degradation: Towards the Development of Globally Applicable Guidelines; Food Resources Assessment Working Paper 177; Food and Agriculture Organization: Rome, Italy, 2011; p. 99. Available online: (accessed on 5 March 2013).
[70]  Flather, C.; Wilson, K. Identifying gaps in conservation networks: Of indicators and uncertainty in geographic-based analyses. Ecol. Appl. 1997, 7, 531–542, doi:10.1890/1051-0761(1997)007[0531:IGICNO]2.0.CO;2.
[71]  Ministry of Lands Parks and Housing. Wells Gray Provincial Park Master Plan. Province of British Columbia: Victoria, BC, Canada, 1986; p. 55. Available online: (accessed on 5 March 2013).
[72]  Ministry of Water, Land and Air Protection. Management Direction for Chopaka. East. Site, South. Okanagan Grasslands Protected Area; Province of British Columbia: Victoria, BC, Canada, 2003. Available online: (accessed on 5 March 2013).
[73]  Klanderud, K. Climate change effects on species interactions in an alpine plant community. J. Ecol. 2005, 93, 127–137, doi:10.1111/j.1365-2745.2004.00944.x.
[74]  Brink, V. A directional change in the subalpine forest-heath ecotone in Garibaldi Park, British Columbia. Ecology 1959, 40, 10–16, doi:10.2307/1929917.
[75]  Wang, T.; Campbell, E.M.; O’Neill, G.A.; Aitken, S.N. Projecting future distributions of ecosystem climate niches: Uncertainties and management applications. For. Ecol. Manag. 2012, 279, 128–140, doi:10.1016/j.foreco.2012.05.034.
[76]  Williams Creek Ecological Reserve—Detailed Description. BC Parks, Ministry of Environment. Available online: (accessed on 5 March 2013).
[77]  Kerr, J.T. Global Change Impacts on Biodiversity: The View from Canada. In Coast to Coast Seminar Series; Sage: Ottawa, ON, Canada, 2012.
[78]  Garry Oak Ecosystems Recovery Team. Species at Risk. Available online: (accessed on 5 March 2013).
[79]  Hamann, A.; Smets, P.; Yanchuk, A.; Aitken, S. An ecogeographic framework for in situ conservation of forest trees in British Columbia. Can. J. For. Res. 2005, 35, 2553–2561, doi:10.1139/x05-181.
[80]  Species at Risk and Local Government. A Primer for British Columbia. Available online: (accessed on 8 May 2012).
[81]  Redfeldt, G.E.; Crookston, N.L.; Sáenz-Romero, C.; Campbell, E.M. North American vegetation model for land-use planning in a changing climate: a solution to large scale classification problems. Ecol. Appl. 2012, 22, 119–141, doi:10.1890/11-0495.1.
[82]  Marmion, M.; Parviainen, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 2009, 15, 59–69, doi:10.1111/j.1472-4642.2008.00491.x.
[83]  Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371, doi:10.1046/j.1466-822X.2003.00042.x.
[84]  Austin, M. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol. Model. 2002, 157, 101–118, doi:10.1016/S0304-3800(02)00205-3.
[85]  Heikkinen, R.K.; Luoto, M.; Araujo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress Phys. Geogr. 2006, 30, 751–777, doi:10.1177/0309133306071957.


comments powered by Disqus