全部 标题 作者
关键词 摘要

Coatings  2013 

The Influence of Interface Characteristics on the Adhesion/Cohesion of Plasma Sprayed Tungsten Coatings

DOI: 10.3390/coatings3020108

Keywords: tungsten (W), plasma spraying, physical vapor deposition (PVD), adhesion, cohesion, plasma-facing components, nuclear fusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tungsten is the prime candidate material for plasma facing components of future fusion devices. Plasma spraying, with its ability to coat large areas, including non-planar surfaces, with a significant thickness, is a prospective fabrication technology for components subject to moderate heat loads, e.g., the first wall of the Demonstration Reactor (DEMO). The functionality of such coatings is critically dependent on their adhesion to the underlying material. This in turn, is influenced by a variety of processing-related factors, chief among them being the state of the interface. In this study, the effects of two factors—surface roughness and the presence of thin interlayers—were investigated. Two different levels of roughness of steel substrates were induced by grit blasting, and two thin interlayers—titanium (Ti) and tungsten (W)—were applied by physical vapor deposition prior to plasma spraying of W by a Water Stabilized Plasma (WSP) torch. Coating adhesion was determined by a shear adhesion test. The structures of the coatings and the interfaces, as well as the characteristics of the fractured surfaces, were observed by SEM.

References

[1]  Romanelli, F.; Barabaschi, P.; Borba, D.; Federici, G.; Horton, L.; Neu, R.; Stork, D.; Zohm, H. Fusion Electricity—A Roadmap to the Realisation of Fusion Energy; European Fusion Development Agreement: Garching, Germany, 2012.
[2]  Bolt, H.; Barabash, V.; Krauss, W.; Linke, J.; Neu, R.; Suzuki, S.; Yoshida, N. Materials for the Plasma-Facing Components of Fusion Reactors. J. Nucl. Mater. 2004, 329, 66–73.
[3]  Davis, J.W.; Barabash, V.R.; Makhankov, A.; Plochl, L.; Slattery, K.T. Assessment of Tungsten for Use in the ITER Plasma Facing Components. J. Nucl. Mater. 1998, 263, 308–312.
[4]  Smid, I.; Akiba, M.; Vieider, G.; Pl?chl, L. Development of Tungsten Armor and Bonding to Copper for Plasma- Interactive Components. J. Nucl. Mater. 1998, 263, 160–172.
[5]  Pintsuk, G. Tungsten as a Plasma-Facing Material. In Comprehensive Nuclear Materials; Konings, R.J.M., Ed.; Elsevier: Amsterdam, The Netherland, 2012; pp. 551–581.
[6]  Maier, H.; Neu, R.; Greuner, H.; B?swirth, B.; Balden, M.; Lindig, S.; Matthews, G.F.; Rasinski, M.; Wienhold, P.; Wiltner, A. Qualification of Tungsten Coatings on Plasma-Facing Components for JET. Phys. Scr. 2009, T138, 014031, doi:10.1088/0031-8949/2009/T138/014031.
[7]  Matějí?ek, J.; Chráska, P.; Linke, J. Thermal Spray Coatings for Fusion Applications—Review. J. Thermal Spray Technol. 2007, 16, 64–83, doi:10.1007/s11666-006-9007-2.
[8]  Matějí?ek, J.; Koza, Y.; Weinzettl, V. Plasma Sprayed Tungsten-based Coatings and their Performance under Fusion Relevant Conditions. Fusion Eng. Des. 2005, 75–79, 395–399, doi:10.1016/j.fusengdes.2005.06.006.
[9]  Weiss, H. Adhesion of Advanced Overlay Coatings—Mechanisms and Quantitative Assessment. Surf. Coat. Technol. 1995, 71, 201–207, doi:10.1016/0257-8972(94)01022-B.
[10]  Sobolev, V.V.; Guilemany, J.M.; Nutting, J.; Miquel, J.R. Development of Substrate-Coating Adhesion in Thermal Spraying. Int. Mater. Rev. 1997, 42, 117–136, doi:10.1179/095066097790093208.
[11]  Mellali, M.; Fauchais, P.; Grimaud, A. Influence of Substrate Roughness and Temperature on the Adhesion/Cohesion of Alumina Coatings. Surf. Coat. Technol. 1996, 81, 275–286, doi:10.1016/0257-8972(95)02540-5.
[12]  Staia, M.H.; Ramos, E.; Carrasquero, A.; Roman, A.; Lesage, J.; Chicot, D.; Mesmacque, G. Effect of Substrate Roughness Induced by Grit Blasting Upon Adhesion of WC-17% Co Thermal Sprayed Coatings. Thin Solid Films 2000, 377, 657–664.
[13]  Vilémová, M.; Siegl, J.; Matějí?ek, J.; Mu?álek, R. Effect of the Grit Blasting Exposure Time on the Adhesion of Al2O3 and 316L Coatings. In Thermal Spray 2011: Proceedings of the International Thermal Spray Conference (DVS-ASM), Hamburg, Germany, 2011; pp. 979–984.
[14]  Wang, Y.Y.; Li, C.J.; Ohmori, A. Influence of Substrate Roughness on the Bonding Mechanisms of High Velocity Oxy-Fuel Sprayed Coatings. Thin Solid Films 2005, 485, 141–147, doi:10.1016/j.tsf.2005.03.024.
[15]  Paredes, R.S.C.; Amico, S.C.; d'Oliveira, A.S.C.M. The Effect of Roughness and Pre-Heating of the Substrate on the Morphology of Aluminium Coatings Deposited by Thermal Spraying. Surf. Coat. Technol. 2006, 200, 3049–3055, doi:10.1016/j.surfcoat.2005.02.200.
[16]  Dallaire, S. Influence of Temperature on the Bonding Mechanism of Plasma-Sprayed Coatings. Thin Solid Films 1982, 95, 237–244.
[17]  Fukumoto, M.; Huang, Y. Flattening Mechanism in Thermal Sprayed Nickel Particle Impinging on Flat Substrate Surface. J. Thermal Spray Technol. 1999, 8, 427–432, doi:10.1361/105996399770350386.
[18]  Jiang, X.Y.; Wan, Y.P.; Herman, H.; Sampath, S. Role of Condensates and Adsorbates on Substrate Surface on Fragmentation of Impinging Molten Droplets During Thermal Spray. Thin Solid Films 2001, 385, 132–141, doi:10.1016/S0040-6090(01)00769-6.
[19]  Qu, M.; Gouldstone, A. On the Role of Bubbles in Metallic Splat Nanopores and Adhesion. J. Thermal Spray Technol. 2008, 17, 486–494, doi:10.1007/s11666-008-9198-9.
[20]  Tran, A.T.T.; Hyland, M.M.; Shinoda, K.; Sampath, S. Influence of Substrate Surface Conditions on the Deposition and Spreading of Molten Droplets. Thin Solid Films 2011, 519, 2445–2456, doi:10.1016/j.tsf.2010.11.047.
[21]  McDonald, A.; Moreau, C.; Chandra, S. Thermal Contact Resistance between Plasma-Sprayed Particles and Flat Surfaces. Int. J. Heat Mass Transfer 2007, 50, 1737–1749, doi:10.1016/j.ijheatmasstransfer.2006.10.022.
[22]  Brossard, S.; Munroe, P.R.; Tran, A.T.T.; Hyland, M.M. Study of the Effects of Surface Chemistry on Splat Formation for Plasma Sprayed NiCr onto Stainless Steel Substrates. Surf. Coat. Technol. 2010, 204, 1599–1607, doi:10.1016/j.surfcoat.2009.10.008.
[23]  Sabiruddin, K.; Bandyopadhyay, P.P.; Bolelli, G.; Lusvarghi, L. Variation of Splat Shape With Processing Conditions in Plasma Sprayed Alumina Coatings. J. Mater. Process. Technol. 2011, 211, 450–462, doi:10.1016/j.jmatprotec.2010.10.020.
[24]  Li, C.J.; Yang, G.J.; Li, C.X. Development of Particle Interface Bonding in Thermal Spray Coatings: A Review. J. Thermal Spray Technol. 2013, 22, 192–206, doi:10.1007/s11666-012-9864-9.
[25]  Cho, G.S.; Choe, K.H. Characterization of Plasma-Sprayed Tungsten Coating on Graphite with Intermediate Layers. Surf. Coat. Technol. 2012, 209, 131–136, doi:10.1016/j.surfcoat.2012.08.051.
[26]  Chong, F.L. Optimization of Plasma-Sprayed Tungsten Coating on Copper with the Heterogeneous Compliant Layer for Fusion Application. J. Thermal Spray Technol. 2013, 22, 57–60, doi:10.1007/s11666-012-9869-4.
[27]  Matějí?ek, J.; Mu?álek, R. Processing and Properties of Plasma Sprayed W+Cu Composites. In Thermal Spray 2008: Crossing Borders (DVS-ASM), Maastricht, The Netherland, 2008; pp. 1400–1405.
[28]  Matějí?ek, J.; Boldyryeva, H. Processing and Temperature-Dependent Properties of Plasma Sprayed Tungsten-Stainless Steel Composites. Phys. Scr. 2009, T138, 014041, doi:10.1088/0031-8949/2009/T138/014041.
[29]  Niu, Y.R.; Hu, D.Y.; Ji, H.; Huang, L.P.; Zheng, X.B. Effect of Bond Coatings on Properties of Vacuum Plasma Sprayed Tungsten Coatings on Copper Alloy Substrate. Fusion Eng. Des. 2011, 86, 307–311, doi:10.1016/j.fusengdes.2011.02.034.
[30]  Weber, T.; Stüber, M.; Ulrich, S.; Vassen, R.; Basuki, V.; Lohmiller, J.; Sittel, W.; Aktaa, J. Functionally Graded Vacuum Plasma Sprayed and Magnetron Sputtered Tungsten/EUROFER97 Interlayers for Joints in Helium-Cooled Divertor Components. J. Nucl. Mater. 2013. in press.
[31]  Jung, Y.-I.; Park, J.-Y.; Choi, B.-K.; Lee, D.-W.; Cho, S. Interfacial Microstructures of HIP Joined W and Ferritic-Martensitic Steel with Ti Interlayers. Fusion Eng. Des. 2013. in press.
[32]  Matějí?ek, J.; Neufuss, K.; Kolman, D.; Chumak, O.; Bro?ek, V. Development and Properties of Tungsten-Based Coatings Sprayed by WSP(R). In International Thermal Spray Conference, Basel, Switzerland, 2005; pp. 634–640.
[33]  EN15340: Thermal spraying—Determination of Shear Load Resistance of Thermally Sprayed Coatings; European Committee for Standardization: Brussels, Belgium, 2007.
[34]  Mu?álek, R.; Pejchal, V.; Vilémová, M.; Matějí?ek, J. Multiple-Approach Evaluation of WSP Coatings Adhesion/Cohesion Strength. J. Thermal Spray Technol. 2013, 22, 221–232, doi:10.1007/s11666-012-9850-2.
[35]  Matějí?ek, J.; Kavka, T.; Bertolissi, G.; Ctibor, P.; Vilémová, M.; Mu?álek, R.; Nevrlá, B. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications. J. Thermal Spray Technol. 2013, 22, 744–755.
[36]  Kavka, T.; Matějí?ek, J.; Ctibor, P.; Hrabovsky, M. Spraying of Metallic Powders by Hybrid Gas/Water Torch and the Effects of Inert Gas Shrouding. J. Thermal Spray Technol. 2012, 21, 695–705, doi:10.1007/s11666-011-9725-y.
[37]  Web Elements. Available online: http://www.webelements.com (accessed on 15 April 2013).
[38]  Zhou, G.J.; Zeng, D.C.; Liu, Z.W. Phase Equilibria in the Fe-Ti-Zr System at 1023 K. J. Alloys Compd. 2010, 490, 463–467, doi:10.1016/j.jallcom.2009.10.046.
[39]  Calculated Ti-W phase diagram. Available online: http://resource.npl.co.uk/mtdata/phdiagrams/tiw.htm (accessed on 15 April 2013).
[40]  Niu, Y.R.; Zheng, X.B.; Ji, H.; Qi, L.J.; Ding, C.X.; Chen, J.L.; Luo, G.N. Microstructure and Thermal Property of Tungsten Coatings Prepared by Vacuum Plasma Spraying Technology. Fusion Eng. Des. 2010, 85, 1521–1526, doi:10.1016/j.fusengdes.2010.04.032.
[41]  Tran, A.T.T.; Hyland, M.M. Bubble Formation in NiCr Splat on Aluminum Substrate during Plasma Spray: Surface Chemistry Effect. IOP Conf. Ser. Mater. Sci. Eng. 2009, 012007, doi:10.1088/1757-899X/4/1/012007.

Full-Text

comments powered by Disqus