All Title Author
Keywords Abstract

Atmosphere  2013 

On the Current and Future Dry Spell Characteristics over?Africa

DOI: 10.3390/atmos4030272

Keywords: dry spell characteristics, regional climate model, Africa, climate change

Full-Text   Cite this paper   Add to My Lib


Changes in precipitation frequency and intensity distribution over Africa will have a direct impact on dry spells and, therefore, will affect various climate sensitive sectors. In this study, the ability of the fifth generation of the Canadian Regional Climate Model (CRCM5) in simulating annual and seasonal dry spell characteristics is assessed for four precipitation thresholds (0.5 mm, 1 mm, 2 mm and 3 mm) over Africa. The dry spell characteristics considered are the number of dry days, number of dry spells and five-year return levels of maximum dry spell durations. The performance errors are assessed by comparing ERA-Interim driven CRCM5 with the Global Precipitation Climatology Project (GPCP) dataset, for the common 1997–2008 period. Lateral boundary forcing errors, i.e., errors in the CRCM5 simulation created by errors in the driving Canadian Earth System model (CanESM2) data—as well as the added value—of CRCM5 over CanESM2 are also assessed for the current climate. This is followed by an assessment of projected changes to dry spell characteristics for two future climates (2041–2070 and 2071–2100) simulated by both CRCM5 driven by CanESM2 and CanESM2 itself, for Representative Concentration Pathway (RCP) 4.5. Results suggest that CRCM5 driven by ERA-Interim has a tendency to overestimate the annual mean number of dry days and the five-year return level of the maximum dry spell duration in a majority of the regions while it slightly underestimates the number of dry spells. In general, the CRCM5 performance errors associated with the annual and seasonal dry spell characteristics are found to be larger in magnitude compared to the lateral boundary forcing errors. Projected changes to the dry spell characteristics for the 2041–2070 and 2071–2100 periods, with respect to the 1981–2010 period suggests significant changes in the tropics, with the mean number of dry days and the five-year return levels of maximum dry spell duration increasing, while the mean number of dry spell days decreases.


[1]  Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007.
[2]  Barron, J.; Rockstr?m, J.; Gichuki, F.; Hatibu, N. Dry spell analysis and maize yields for two semi-arid locations in East Africa. Agric. For. Meteorol. 2003, 117, 23–37, doi:10.1016/S0168-1923(03)00037-6.
[3]  Shongwe, M.E.; Van Oldenborgh, G.J.; Van Den Hurk, B.; Van Aalst, M.K. Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. J. Clim. 2010, 24, 3718–3733.
[4]  Barnett, D.N.; Brown, S.J.; Murphy, J.M.; Sexton, D.M.H.; Webb, M.J. Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Clim. Dyn. 2006, 26, 489–511, doi:10.1007/s00382-005-0097-1.
[5]  Dai, A. Precipitation characteristics in eighteen coupled climate models. J. Clim. 2006, 19, 4605–4630, doi:10.1175/JCLI3884.1.
[6]  Tebaldi, C.J.; Arblaster, M.; Hayhoe, K.; Meehl, G.A. Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Clim. Change 2006, 79, 185–211, doi:10.1007/s10584-006-9051-4.
[7]  Hudson, D.A.; Jones, R.G. Regional Climate Model Simulations of Present-Day and Future Climates of Southern Africa; Met Office Hadley Center: Exeter, UK, 2002.
[8]  Sun, Y.; Solomon, S.; Dai, A.; Portmann, R. How often does it rain? J. Clim. 2005, 19, 916–934.
[9]  Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.; D?ll, P.; Kabat, P.; Jiménez, B.; Miller, K.; Oki, T.; Sen, Z.; Shiklomanov, I. Freshwater Resources and Their Management. In Climate Change Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 173–210.
[10]  Sushama, L.; Khaliq, M.N.; Laprise, R. Dry spell characteristics over Canada in a changing climate as simulated by the Canadian RCM. Glob. Planet. Change 2010, 74, 1–14, doi:10.1016/j.gloplacha.2010.07.004.
[11]  Gao, X.; Pal, J.S.; Giorgi, F. Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys. Res. Lett. 2006, doi:10.1029/2005GL024954.
[12]  Heinrich, G.; Gobiet, A. The future of dry and wet spells in Europe : A comprehensive study based on the ENSEMBLES regional climate models. Int. J. Climatol. 2012, 32, 1951–1970, doi:10.1002/joc.2421.
[13]  May, W. Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Clim. Dyn. 2008, 30, 581–603, doi:10.1007/s00382-007-0309-y.
[14]  Sanchez, E.; Dominguez, M.; Romera, R.; Lopez De la Franca, N.; Gaertner, M.A.; Gallardo, C.; Castro, M. Regional modeling of dry spells over the Iberian Peninsula for present climate and climate change conditions. Clim. Change 2011, 107, 625–634, doi:10.1007/s10584-011-0114-9.
[15]  Hulme, M.; Doherty, R.; Ngara, T.; New, M.; Lister, D. African climate change: 1900–2100. Clim. Res. 2001, 17, 145–168, doi:10.3354/cr017145.
[16]  Sun, L.; Semazzi, F.H.M.; Giorgi, F.; Ogallo, L. Application of the NCAR regional climate model to eastern Africa. 1. Simulation of the short rains of 1988. J. Geophys. Res. 1999, 104, 6529–6548, doi:10.1029/1998JD200051.
[17]  Sun, L.; Semazzi, F.H.M.; Giorgi, F.; Ogallo, L. Application of the NCAR regional climate model to eastern Africa. 2. Simulation of interannual variability of short rains. J. Geophys. Res. 1999, 104, 6549–6562, doi:10.1029/1998JD200050.
[18]  Patricola, C.M.; Cook, K.H. Dynamics of the West African monsoon under mid-holocene precessional forcing: Regional climate model simulations. J. Clim. 2006, 20, 694–716, doi:10.1175/JCLI4013.1.
[19]  Ibrahim, B.; Polcher, J.; Karambiri, H.; Rockel, B. Characterization of the rainy season in Burkina Faso and its representation by regional climate models. Clim. Dyn. 2012, 39, 1287–1302, doi:10.1007/s00382-011-1276-x.
[20]  Joubert, A.M.; Katzfey, J.J.; McGregor, J.L.; Nguyen, K.C. Simulating midsummer climate over southern Africa using a nested regional climate model. J. Geophys. Res. 1999, 104, 19015–19025, doi:10.1029/1999JD900256.
[21]  Hudson, D.A.; Jones, R.G. Simulations of Present-day and Future Climate over Southern Africa Using HadAM3H; Met Office Hadley Center: Exeter, UK, 2002.
[22]  Hewitson, B. Developing perturbations for climate change impact assessments. EOS Trans. AGU 2003, 84, 337–339, doi:10.1029/2003EO350001.
[23]  Anyah, R.O.; Qiu, W. Characteristic 20th and 21st century precipitation and temperature patterns and changes over the Greater Horn of Africa. Int. J. Climatol. 2011, 32, 347–363, doi:10.1002/joc.2270.
[24]  Redelsperger, J.-L.; Thorncroft, C.D.; Lebel, T.; Douglas, J.P.; Polcher, J. African monsoon multidisciplinary analysis: An international research project and field campaign. Bull. Am. Meteorol. Soc. 2006, 87, 1739–1746, doi:10.1175/BAMS-87-12-1739.
[25]  Sultan, B.; Janicot, S. La variabilité climatique en Afrique de l’Ouest aux échelles intra-saisonnières. I: mise en place de la mousson et variabilité intra-saisonnière de la convection. Sécheresse 2004, 15, 321–330.
[26]  Van der Linden, P.; Mitchell, J.F.B. ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES Project; Met Office Hadley Centre: Exeter, UK, 2009.
[27]  Xue, Y.; De Sales, F.; Lau, W.K.M.; Boone, A.; Feng, J.; Dirmeyer, P.; Guo, Z.; Kim, K.-M.; Kitoh, A.; Kumar, V.; et al. Intercomparison and analyses of the climatology of the West African monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Clim. Dyn. 2010, 35, 3–27, doi:10.1007/s00382-010-0778-2.
[28]  Druyan, L.M.; Feng, J.; Cook, K.H.; Xue, Y.; Fulakeza, M.; Hagos, S.M.; Konaré, A.; Moufouma-Okia, W.; Rowell, D.P.; Vizy, E.K.; et al. The WAMME regional model intercompariason study. Clim. Dyn. 2010, 35, 175–192, doi:10.1007/s00382-009-0676-7.
[29]  Giorgi, F.; Jones, C.; Asrar, G. Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull. 2009, 58, 175–183.
[30]  Hernández-Díaz, L.; Laprise, R.; Sushama, L.; Martynov, A.; Winger, K.; Dugas, B. Climate simulation over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model (CRCM5). Clim. Dyn. 2013, 40, 1415–1433, doi:10.1007/s00382-012-1387-z.
[31]  Laprise, R.; Hernandez-Diaz, L.; Tete, K.; Sushama, L.; Separovic, L.; Martynov, A.; Winger, K.; Valin, M. Climate projections over CORDEX Africa domain using the fifth-generation Canadian Regional Climate Model. Clim. Dyn. 2013, doi:10.1007/s00382-012-1651-2.
[32]  Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.-F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 2011, doi:10.1007/s10584-011-0156-z.
[33]  Zadra, A.; Caya, D.; Cote, J.; Dugas, B.; Jones, C.; Laprise, R.; Winger, K.; Caron, L.-P. The next canadian regional climate model. Phys. Can. 2008, 64, 75–83.
[34]  C?té, J.; Gravel, S.; Méthot, A.; Patoine, A.; Roch, M.; Staniforth, A. The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Weather Rev. 1998, 126, 1373–1395, doi:10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.
[35]  C?té, J.; Desmarais, J.-G.; Gravel, S.; Méthot, A.; Patoine, A.; Roch, M.; Staniforth, A. The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part II: Results. Mon. Weather Rev. 1998, 126, 1397–1418, doi:10.1175/1520-0493(1998)126<1397:TOCMGE>2.0.CO;2.
[36]  Yeh, K.; C?té, J.; Gravel, S.; Méthot, A.; Patoine, A.; Roch, M.; Staniforth, A. The CMC–MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Weather Rev. 2002, 130, 339–356, doi:10.1175/1520-0493(2002)130<0339:TCMGEM>2.0.CO;2.
[37]  Laprise, R. The EULER equations of motion with hydrostatic pressure as an independent variable. Mon. Weather Rev. 1992, 120, 197–207, doi:10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2.
[38]  Kain, J.S.; Fritsch, J.M. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 1990, 47, 2784–2802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.
[39]  Kuo, H.L. On formation and intensification of tropical cyclone through latent heat release by cumulus convection. J. Atmos Sci. 1965, 22, 40–63, doi:10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.
[40]  Bélair, S.; Mailhot, J.; Girard, C.; Vaillancourt, P. Boundary-layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon. Wea. Rev. 2005, 133, 1938–1960, doi:10.1175/MWR2958.1.
[41]  Sundqvist, H.; Berge, E.; Kristjansson, J.E. Condensation and cloud parameterization studies with a Mesoscale numerical weather prediction model. Mon. Wea. Rev. 1989, 117, 1641–1657, doi:10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2.
[42]  Li, J.; Barker, H.W. A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium. J. Atmos. Sci. 2005, 62, 286–309, doi:10.1175/JAS-3396.1.
[43]  McFarlane, N.A. The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci. 1987, 44, 1775–1800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.
[44]  Zadra, A.; Roch, M.; Laroche, S.; Charron, M. The subgrid scale orographie blocking parametrization of the GEM model. Atmos.-Ocean 2003, 41, 155–170, doi:10.3137/ao.410204.
[45]  Benoit, R.; Cote, J.; Mailhot, J. Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon. Wea. Rev. 1989, 117, 1726–1750, doi:10.1175/1520-0493(1989)117<1726:IOATBL>2.0.CO;2.
[46]  Delage, Y.; Girard, C. Stability functions correct at the free convection limit and consistent for both the surface and Ekman layers. Bound. Layer Meteor. 1992, 58, 19–31, doi:10.1007/BF00120749.
[47]  Delage, Y. Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound.-Layer Meteor. 1997, 82, 23–48, doi:10.1023/A:1000132524077.
[48]  Verseghy, L.D. The Canadian Land Surface Scheme (CLASS): Its history and future. Atmos. Ocean 2000, 38, 1–13, doi:10.1080/07055900.2000.9649637.
[49]  Simmons, A.S.; Uppala, D.D.; Kobayashi, S. ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl. 2007, 110, 29–35.
[50]  Uppala, S.; Dee, D.; Kobayashi, S.; Berrisford, P.; Simmons, A. Towards a climate data assimilation system: status update of ERA-interim. ECMWF Newsl. 2008, 115, 12–18.
[51]  Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor. 2001, 2, 36–50, doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.
[52]  Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Christensen, O.B.; Déqué, M.; Fernandez, J.; H?nsler, A.; et al. Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J. Clim. 2012, doi:10.1175/JCLI-D-11-00375.1.
[53]  Beniston, M.; Stephenson, D.B.; Christenson, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylh?, K.; Koffi, B.; et al. Future extreme events in European climate: an exploration of regional climate model projections. Clim. Change 2007, 81, 71–95.
[54]  Lana, X.; Martínez, M.D.; Burgue?o, A.; Serra, C. Statistical distribution and sampling strategies for the analysis of extreme dry spells in Catalonia (NE Spain). J. Hydrol. 2006, doi:10.1016/j.jhydrol.2005.09.013.
[55]  She, D.; Xia, J.; Song, J.; Du, H.; Chen, J.; Wan, L. Spatio-temporal variation and statistical characteristic of extreme dry spell in Yellow River, China. Theor. Appl. Climatol. 2012, doi:10.1007/s00704-012-0731-x.
[56]  Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: New York, NY, USA, 2001.
[57]  Christensen, J.H.; Machenhauer, B.; Jones, R.G.; Sch?r, C.; Ruti, P.M.; Castro, M.; Visconti, G. Validation of present regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim. Dyn. 1997, 13, 489–506, doi:10.1007/s003820050178.
[58]  Walpole, R.E.; Myers, R.H. Probability and Statistics for Engineers and Scientists, 3rd ed. ed.; Macmillan: New York, USA, 1985.
[59]  Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability; Chapman and Hall: New York, USA, 1993.
[60]  GREPHYS. Inter-comparison of regional flood frequency procedure for Canadian rivers. J. Hydrol. 1996, 186, 85–103, doi:10.1016/S0022-1694(96)03043-0.
[61]  Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P.; Sushama, L.; St-Hilaire, A. Identification of hydrological trends in the presence of serial and cross correlations: a review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 2009, 368, 117–130, doi:10.1016/j.jhydrol.2009.01.035.
[62]  Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Amer. Meteor. Soc. 2004, 85, 381–394, doi:10.1175/BAMS-85-3-381.
[63]  Taylor, C.M.; Parker, D.J.; Kalthoff, N.; Gaertner, M.A.; Philippon, N.; Bastin, S.; Harris, P.P.; Boone, A.; Guichard, F.; Agustin-Panareda, A.; et al. New perspectives on land-atmosphere feedbacks from the African monsoon multidisciplinary analysis. Atmos. Sci. Lett. 2011, 12, 38–44, doi:10.1002/asl.336.
[64]  Mupangwa, W.; Walker, S.; Twomlow, S. Start, end and dry spells of the growing season in semi-arid southern Zimbabwe. J. Arid Environ 2011, 75, 1097–1104, doi:10.1016/j.jaridenv.2011.05.011.
[65]  Cook, C.; Reason, C.J.C.; Hewitson, B.C. Wet and dry spells within particularly wet and dry summers in the South African summer rainfall region. Clim. Res. 2004, 26, 17–31, doi:10.3354/cr026017.


comments powered by Disqus

Contact Us


微信:OALib Journal