全部 标题 作者
关键词 摘要

Agriculture  2013 

Global Change and Helminth Infections in Grazing Ruminants in Europe: Impacts, Trends and Sustainable Solutions

DOI: 10.3390/agriculture3030484

Keywords: helminthoses, ruminants, diagnosis, control, infection risk, global change, climate change, anthelmintic resistance, risk management, spatio-temporal modelling, epidemiology, food security

Full-Text   Cite this paper   Add to My Lib

Abstract:

Infections with parasitic helminths (nematodes and trematodes) represent a significant economic and welfare burden to the global ruminant livestock industry. The increasing prevalence of anthelmintic resistance means that current control programmes are costly and unsustainable in the long term. Recent changes in the epidemiology, seasonality and geographic distribution of helminth infections have been attributed to climate change. However, other changes in environment (e.g., land use) and in livestock farming, such as intensification and altered management practices, will also have an impact on helminth infections. Sustainable control of helminth infections in a changing world requires detailed knowledge of these interactions. In particular, there is a need to devise new, sustainable strategies for the effective control of ruminant helminthoses in the face of global change. In this paper, we consider the impact of helminth infections in grazing ruminants, taking a European perspective, and identify scientific and applied priorities to mitigate these impacts. These include the development and deployment of efficient, high-throughput diagnostic tests to support targeted intervention, modelling of geographic and seasonal trends in infection, more thorough economic data and analysis of the impact of helminth infections and greater translation and involvement of end-users in devising and disseminating best practices. Complex changes in helminth epidemiology will require innovative solutions. By developing and using new technologies and models, the use of anthelmintics can be optimised to limit the development and spread of drug resistance and to reduce the overall economic impact of helminth infections. This will be essential to the continued productivity and profitability of livestock farming in Europe and its contribution to regional and global food security.

References

[1]  FAOSTAT (2009). Available online: http://faostat.fao.org/ (accessed on 15 July 2013).
[2]  Baulcombe, D.; Crute, I.; Dunwell, J.; Gale, M.; Jones, J.; Pretty, J.; Sutherland, W.; Toulmin, C. Reaping the Benefits—Science and the Sustainable Intensification of Global Agriculture; Royal Society Policy Document: London, UK, 2009.
[3]  Chiotti, Q.P.; Johnston, T. Extending the boundaries of climate change research—A discussion on agriculture. J. Rural Stud. 1995, 11, 335–350, doi:10.1016/0743-0167(95)00023-G.
[4]  Nieuwhof, G.J.; Bishop, S.C. Costs of the major endemic diseases in Great Britain and the potential benefits of reduction in disease impact. Anim. Sci. 2005, 81, 23–29.
[5]  Schweizer, G.; Braun, W.; Deplazes, D.; Torgerson, P.R. The economic effects of bovine fasciolosis in Switzerland. Vet. Rec. 2005, 157, 188–193.
[6]  Selzer, P.M. Preface. In Antiparasitic and Antibacterial Drug Discovery. From Molecular Targets to Drug Candidates; Wiley-Blackwell: Hoboken, USA, 2009; pp. 11–12.
[7]  Charlier, J.; H?glund, J.; von Samson-Himmelstjerna, G.; Dorny, P.; Vercruysse, J. Gastrointestinal nematode infections in adult dairy cattle: Impact on production, diagnosis and control. Vet. Parasitol. 2009, 164, 70–79, doi:10.1016/j.vetpar.2009.04.012.
[8]  Rehbein, S.; Baggott, D.G.; Johnson, E.G.; Kunkle, B.N.; Yazwinski, T.A.; Yoon, S.; Cramer, L.G.; Soll, M.D. Nematode burdens of pastured cattle treated once at turnout with eprinomectin extended-release injection. Vet. Parasitol. 2013, 192, 321–331, doi:10.1016/j.vetpar.2012.11.038.
[9]  Van Dijk, J.; Morgan, E.R. The influence of temperature on the development, hatching and survival of Nematodirus battus larvae. Parasitology 2008, 135, 269–283.
[10]  Mejia, M.E.; Perri, A.F.; Licoff, N.; Miglierina, M.M.; Cseh, S.; Ornstein, A.M.; Becu-Villalobos, D.; Lacau-Mengido, I.M. Comparison of three methods for gastrointestinal nematode diagnosis determination in grazing dairy cattle in relation to milk production. Vet. Parasitol. 2011, 183, 174–177, doi:10.1016/j.vetpar.2011.06.027.
[11]  Charlier, J.; van der Voort, M.; Hogeveen, H.; Vercruysse, J. ParaCalc?—A novel tool to evaluate the economic importance of worm infections on the dairy farm. Vet. Parasitol. 2012, 184, 204–211, doi:10.1016/j.vetpar.2011.09.008.
[12]  Charlier, J.; Levecke, B.; Devleesschauwer, B.; Vercruysse, J.; Hogeveen, H. The economic effects of whole-herd versus selective anthelmintic treatment strategies in dairy cows. J. Dairy Sci. 2012, 95, 2977–2987, doi:10.3168/jds.2011-4719.
[13]  Mason, W.A.; Pomroy, W.E.; Lawrence, K.E.; Scott, I. The effect of repeated, four-weekly eprinomectin treatment on milk production in pasture-based, seasonally-calving dairy cattle. Vet. Parasitol. 2012, 189, 250–259, doi:10.1016/j.vetpar.2012.05.003.
[14]  Van Dijk, J.; Sargison, N.D.; Kenyon, F.; Skuce, P. Climate change and infectious disease: Helminthological challenge to farmed ruminants in temperate regionsInvited Review. Animal 2010, 4, 377–392, doi:10.1017/S1751731109990991.
[15]  Sargison, N.D.; Wilson, D.J.; Bartley, D.J.; Penny, C.D.; Jackson, F. Haemonchosis and teladorsagiosis in a Scottish sheep flock putatively associated with the over-wintering of hypobiotic fourth stage larvae. Vet. Parasitol. 2007, 147, 326–331, doi:10.1016/j.vetpar.2007.04.011.
[16]  Kenyon, F.; Sargison, N.D.; Skuce, P.J.; Jackson, F. Sheep helminth parasitic disease in South-Eastern Scotland arising as a possible consequence of climate change. Vet. Parasitol. 2009, 163, 293–297, doi:10.1016/j.vetpar.2009.03.027.
[17]  Lindqvist, A.; Ljungstr?m, B.L.; Nilsson, O.; Waller, P.J. The dynamics, prevalence and impact of nematode infections in organically raised sheep in Sweden. Acta Vet. Scand. 2001, 42, 377–389, doi:10.1186/1751-0147-42-377.
[18]  De la Rocque, S.; Rioux, J.A.; Slingenbergh, J. Climate change: Effects on animal disease systems and implications for surveillance and control. Rev. Sci. Tech. Int. Off. of Epizoot. 2008, 27, 339–354.
[19]  Morgan, E.R.; Wall, R. Climate change and parasitic disease: Farmer mitigation? Trends Parasitol. 2009, 7, 308–313, doi:10.1016/j.pt.2009.03.012.
[20]  Leathwick, D.M.; Barlow, N.D.; Vlassoff, A. A model for nematodiasis in New Zealand lambs. Int. J. Parasitol. 1992, 22, 789–799, doi:10.1016/0020-7519(92)90129-9.
[21]  Reynecke, D.P.; Waghorn, T.S.; Oliver, A.-M.B.; Miller, C.M.; Vlassoff, A.; Leathwick, D.M. Dynamics of the free-living stages of sheep intestinal parasites on pasture in the North Island of New Zealand. 2. Weather variables associated with development. Vet. J. 2011, 59, 287–292.
[22]  Leathwick, D.M.; Waghorn, T.S.; Miller, C.M.; Candy, P.M.; Oliver, A.-M.B. Managing anthelmintic resistance—Use of a combination anthelmintic and leaving some lambs untreated to slow the development of resistance to ivermectin. Parasitology 2012, 187, 285–294.
[23]  Dobson, R.J.; Barnes, E.H.; Tyrrell, K.L.; Hosking, B.C.; Larsen, J.W.A.; Besier, R.B.; Love, S.; Rolfe, P.F.; Bailey, J.N. A multi-species modelto assess the effect of refugia on worm control and anthelmintic resistance insheep grazing systems. Aust. Vet. J. 2011, 89, 200–208, doi:10.1111/j.1751-0813.2011.00719.x.
[24]  Laurenson, Y.C.S.M.; Bishop, S.C.; Forbes, A.B.; Kyriazakis, I. Modelling the short- and long-term impacts of drenching frequency and targeted selective treatment on the performance of grazing lambs and the emergence of anthelmintic resistance. Parasitology 2013, 140, 780–791, doi:10.1017/S0031182012002181.
[25]  Fox, N.J.; White, P.C.L.; McClean, C.J.; Marion, G.; Evans, A.; Hutchings, M.R. Predicting impacts of climate change on Fasciola hepatica risk. PLoS One 2011, 6, e16126.
[26]  Jackson, F.; Miller, J. Alternative approaches to control—Quo vadit? Vet. Parasitol. 2006, 139, 371–384, doi:10.1016/j.vetpar.2006.04.025.
[27]  Kaplan, R.M. Drug resistance in nematodes of veterinary importance: A status report. Trends Parasitol. 2004, 20, 477–481, doi:10.1016/j.pt.2004.08.001.
[28]  Familton, A.S.; Mason, P.; Coles, G.C. Anthelmintic-resistant Cooperia species in cattle. Vet. Rec. 2001, 149, 719–720.
[29]  Sangster, N.C.; Dobson, R.J. Anthelmintic Resistance. In The Biology of Nematodes; Lee, D.L., Ed.; Taylor and Francis: London, UK, 2002; pp. 531–567.
[30]  Sutherland, I.A.; Leathwick, D.M. Anthelmintic resistance in nematode parasites of cattle—A global issue? Trends Parasitol 2010, 27, 176–181, doi:10.1016/j.pt.2010.11.008.
[31]  Demeler, J.; van Zeveren, A.M.; Kleinschmidt, N.; Vercruysse, J.; H?glund, J.; Koopmann, R.; Cabaret, J.; Claerebout, E.; Areskog, M.; von Samson-Himmelstjerna, G. Monitoring the efficacy of ivermectin and albendazole against gastro intestinal nematodes of cattle in Northern Europe. Vet. Parasitol. 2009, 160, 109–115, doi:10.1016/j.vetpar.2008.10.030.
[32]  El-Abdellati, A.; Charlier, J.; Geldhof, P.; Levecke, B.; Demeler, J.; von Samson-Himmelstjerna, G.; Claerebout, E.; Vercruysse, J. The use of a simplified faecal egg count reduction test for assessing anthelmintic efficacy on Belgian and German cattle farms. Vet. Parasitol. 2010, 169, 352–357, doi:10.1016/j.vetpar.2010.01.015.
[33]  Bartley, D.J.; Jackson, F.; Jackson, E.; Sargison, N. Characterisation of two triple resistant field isolates of Teladorsagia from Scottish lowland sheep farms. Vet. Parasitol. 2004, 123, 189–199, doi:10.1016/j.vetpar.2004.06.018.
[34]  Sargison, N.D.; Jackson, F.; Bartley, D.J.; Wilson, D.J.; Stenhouse, L.J.; Penny, C.D. Observations on the emergence of multiple anthelmintic resistance in sheep flocks in the south-east of Scotland. Vet. Parasitol. 2007, 45, 65–76.
[35]  Wolstenholme, A.J.; Fairweather, I.; Prichard, R.; von Samson-Himmelstjerna, G.; Sangster, N.; Nicholas, C. Drug resistance in veterinary helminths. Trends Parasitol. 2004, 20, 469–476, doi:10.1016/j.pt.2004.07.010.
[36]  Kaminsky, R.; Ducray, P.; Jung, M.; Clover, R.; Rufener, L.; Bouvier, J.; Weber, S.S.; Wenger, A.; Wieland-Berghausen, S.; Goebel, T.; et al. A new class of anthelmintics effective against drug-resistant nematodes. Nature 2008, 452, 176–180, doi:10.1038/nature06722.
[37]  Little, P.R.; Hodges, A.; Watson, T.G.; Seed, J.A.; Maeder, S.J. Field efficacy and safety of an oral formulation of the novel combination anthelmintic, derquantel-abamectin, in sheep in New Zealand. N. Z. Vet. J. 2010, 58, 121–129, doi:10.1080/00480169.2010.67513.
[38]  Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Report presented to the Food and Agricultural Organisation of the United Nations (FAO): Rome, Italy, 2006; p. 284.
[39]  Gill, M.; Smith, P.; Wilkinson, J.M. Mitigating climate change: The role of domestic livestock. Animal 2010, 4, 323–333, doi:10.1017/S1751731109004662.
[40]  Thornton, P.K. Livestock production: Recent trends, future prospects. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2853–2867.
[41]  Taylor, M.A.; Hunt, K.R.; Goodyear, K.L. Anthelmintic resistance detection methods. Vet. Parasitol. 2002, 103, 183–194, doi:10.1016/S0304-4017(01)00604-5.
[42]  Gasser, R.B.; Bott, N.J.; Chilton, N.B.; Hunt, P.; Beveridge, I. Toward practical, DNA-based diagnostic methods for parasitic nematodes of livestock—Bionomic and biotechnical implications. Biotechnol. Adv. 2008, 26, 325–334.
[43]  Zarlenga, D.S.; Chute, M.; Gasbarre, L.C.; Boyd, P.C. A multiplex PCR assay for differentiating economically important gastrointestinal nematodes of cattle. Vet. Parasitol. 2001, 97, 199–209.
[44]  Wimmer, B.; Craig, B.H.; Pilkington, J.G.; Pemberton, J.M. Non-invasive assessment of parasitic nematode species diversity in wild Soay sheep using molecular markers. Int. J. Parasitol. 2004, 34, 625–631, doi:10.1016/j.ijpara.2003.11.022.
[45]  Learmount, J.; Conyers, C.; Hird, H.; Morgan, C.; Craig, B.H.; von Samson-Himmelstjerna, G.; Taylor, M. Development and validation of real-time PCR methods for diagnosis of Teladorsagia circumcincta and Haemonchus contortus in sheep. Vet. Parasitol. 2009, 166, 268–274, doi:10.1016/j.vetpar.2009.08.017.
[46]  Dobson, R.J.; Sangster, N.C.; Besier, R.B.; Woodgate, R.G. Geometric means provide a biased efficacy result when conducting a faecal egg count reduction test (FECRT). Vet. Parasitol. 2009, 161, 162–167, doi:10.1016/j.vetpar.2008.12.007.
[47]  Coles, G.C.; Jackson, F.; Pomroy, W.E.; Prichard, R.K.; von Samson-Himmelstjerna, G.; Silvestre, A.; Taylor, M.A.; Vercruysse, J. The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 2006, 136, 167–185, doi:10.1016/j.vetpar.2005.11.019.
[48]  Von Samson-Himmelstjerna, G.; Blackhall, W.J.; McCarthy, J.S.; Skuce, P.J. Single nucleotide polymorphism (SNP) markers for benzimidazole resistance in veterinary nematodes. Parasitology 2007, 134, 1077–1086, doi:10.1017/S0031182007000054.
[49]  Von Samson-Himmelstjerna, G.; Walsh, T.K.; Donnan, A.A.; Carriere, S.; Jackson, F.; Skuce, P.J.; Rohn, K.; Wolstenholme, A.J. Molecular detection of benzimidazole resistance in Haemonchus contortus using real-time PCR and pyrosequencing. Parasitology 2009, 136, 349–358, doi:10.1017/S003118200800543X.
[50]  Skuce, P.J.; Stenhouse, L.; Jackson, F.; Hypsa, V.; Gilleard, J.S. Benzimidazole resistance allele haplotype diversity in United Kingdom isolates of Teladorsagia circumcincta supports a hypothesis of multiple origins of resistance by recurrent mutation. Int. J. Parasitol. 2010, 40, 1247–1255, doi:10.1016/j.ijpara.2010.03.016.
[51]  H?glund, J.; Gustaffson, K.; Ljungstrom, B.L.; Engstrom, A.; Donnan, A.A.; Skuce, P.J. Anthelmintic resistance in Swedish sheep flocks based on a comparison of the results from the faecal egg count reduction test and resistant allele frequencies of the beta-tubulin gene. Vet. Parasitol. 2009, 161, 60–68, doi:10.1016/j.vetpar.2008.12.001.
[52]  Beech, R.N.; Skuce, P.; Bartley, D.J.; Martin, R.J.; Prichard, R.K.; Gilleard, J.S. Anthelmintic resistance: Markers for resistance, or susceptibility? Parasitology 2010, 138, 160–174.
[53]  Gilleard, J.S. Understanding anthelmintic resistance: The need for genomics and genetics. Int. J. Parasitol. 2006, 36, 1227–1239, doi:10.1016/j.ijpara.2006.06.010.
[54]  Vignali, D.A.A. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 2000, 243, 243–255, doi:10.1016/S0022-1759(00)00238-6.
[55]  Pickering, J.W.; Martin, T.B.; Schroder, M.C.; Hill, H.R. Comparison of a multiplex flow cytometric assay with Enzyme-Linked Immunosorbent Assay for quantification of antibodies to Tetanus, Diphtheria and Haemophilus influenza Type b. Clin. Diagn. Lab. Immunol. 2002, 9, 872–876.
[56]  Dunbar, S.A.; Vander Zee, C.A.; Oliver, K.G.; Karem, K.L.; Jacobson, J.W. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAPTM system. J. Microbiol. Methods 2003, 53, 245–252, doi:10.1016/S0167-7012(03)00028-9.
[57]  Morgan, E.R.; Varro, R.; Sepulveda, H.; Ember, J.A.; Apgar, J.; Wislon, J.; Lowe, L.; Chen, R.; Shivraj, L.; Agadir, A.; et al. Cytometric bead array: A multiplexed assay platform with applications in various areas of biology. Clin. Immunol. 2004, 110, 252–266, doi:10.1016/j.clim.2003.11.017.
[58]  Dunbar, S.A. Application of Luminex xMAPTM technology for rapid, high-throughput multiplexed nucleic acid detection. Clinia Chim. Acta 2006, 363, 71–82, doi:10.1016/j.cccn.2005.06.023.
[59]  Charlier, J.; Vercruysse, J.; Smith, J.; Vanderstichel, R.; Stryhn, H.; Claerebout, E.; Dohoo, I. Evaluation of anti-Ostertagia ostertagi antibodies in individual milk samples as decision parameter for selective anthelmintic treatment in dairy cows. Prev. Vet. Med. 2009, 93, 147–152.
[60]  McCann, C.M.; Baylis, M.; Williams, D.J.L. Seroprevalence and spatial distribution of Fasciola hepatica-infected dairy herds in England and Wales. Vet. Rec. 2010, 166, 612–617, doi:10.1136/vr.b4836.
[61]  Andersen, U.V.; Howe, D.K.; Dangoudoubiyam, S.; Toft, N.; Reinemeyer, C.R.; Lyons, E.T.; Olsen, S.N.; Monrad, J.; Nejsum, P.; Nielsen, M.K. SvSXP: A Strongylus vulgaris antigen with potential for prepatent diagnosis. Parasites Vectors 2013, 6, 84, doi:10.1186/1756-3305-6-84.
[62]  Ganheim, C.; H?glund, J.; Waller, P. Acute phase proteins in response to Dictyocaulus viviparus infection in calves. Acta Vet. Scand. 2004, 45, 79–86, doi:10.1186/1751-0147-45-79.
[63]  Charlier, J.; Dorny, P.; Levecke, B.; Demeler, J.; von Samson-Himmelstjerna, G.; H?glund, J.; Vercruysse, J. Serum pepsinogen levels to monitor gastrointestinal nematode infections in cattle revisited. Res. Vet. Sci. 2011, 90, 451–456, doi:10.1016/j.rvsc.2010.06.029.
[64]  Bandyopadhyay, K.; Kellar, K.L.; Moura, I.; Casaqui Carollo, M.C.; Graczyk, T.K.; Slemenda, S.; Johnston, S.P.; da Silva, A.J. Rapid microsphere assay for identification of Cryptosporidium hominis and Cryptosporidium parvum in stool and environmental samples. J. Clin. Microbiol. 2007, 45, 2835–2840, doi:10.1128/JCM.00138-07.
[65]  Li, W.; Zhang, N.; Gong, P.; Cao, L.; Li, J.; Su, L.; Li, S.; Diao, Y.; Wu, K.; Li, L.; et al. A novel multiplex PCR coupled with Luminex assay for the simultaneous detection of Cryptosporidium spp., Cryptosporidium parvum and Giardia duodenalis. Vet. Parasitol 2010, 173, 11–18.
[66]  Stark, D.; Al-Qassab, S.E.; Barratt, J.L.; Stanley, K.; Roberts, T.; Marriott, D.; Harkness, J.; Ellis, J. An evaluation of a multiplex tandem real-time PCR for the detection of Cryptosporidium spp, Dientamoeba fragilis, Entamoeba histolytica, and Giardia intestinalis from clinical stool samples. J. Clin. Microbiol. 2010, 49, 257–262.
[67]  Iseki, H.; Alhassan, A.; Ohta, N.; Thekisoe, O.M.M.; Yokoyama, N.; Inoue, N.; Nambota, A.; Yasuda, J.; Igarashi, I. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simultaneous detection of bovine Babesia parasites. J. Microbiol. Methods 2007, 71, 281–287, doi:10.1016/j.mimet.2007.09.019.
[68]  Parida, M.; Sannarangaiah, S.; Dash, P.K.; Rao, P.V.; Morita, K. Loop mediated isothermal amplification (LAMP): A new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev. Med. Virol. 2008, 18, 407–421, doi:10.1002/rmv.593.
[69]  Aonuma, H.; Yoshimura, A.; Perera, N.; Shinzawa, N.; Bando, H.; Oshiro, S.; Nelson, B.; Fukumoto, S.; Kanuka, H. Loop-mediated isothermal amplification applied to filarial parasites detection in the mosquito vectors: Dirofilaria immitis as a study model. Parasites Vectors 2009, 2, 15–21, doi:10.1186/1756-3305-2-15.
[70]  Mori, Y.; Notomi, T. Loop-mediated isothermal amplification (LAMP): A rapid, accurate and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 2009, 15, 62–69, doi:10.1007/s10156-009-0669-9.
[71]  Ollerenshaw, C.B.; Rowlands, W.T. A method of forecasting the incidence of fascioliasis in Anglesey. Vet. Rec. 1959, 71, 591–598.
[72]  Cornell, S. Modelling nematode populations: 20 years of progress. Trends Parasitol. 2005, 21, 542–545, doi:10.1016/j.pt.2005.08.019.
[73]  Fuentes, M.V. Remote sensing and climate data as a key for understanding fasciolosis transmission in the Andes: Review and update of an ongoing interdisciplinary project. Geospat. Health 2006, 1, 59–70.
[74]  Rose, H.; Wall, R. Modelling the impact of climate change on spatial patterns of disease risk: Sheep blowfly strike by Lucilia sericata in Great Britain. Int. J. Parasitol. 2011, 41, 739–746, doi:10.1016/j.ijpara.2011.01.012.
[75]  Biggeri, A.; Catelan, D.; Dreassi, E.; Rinaldi, L.; Musella, V.; Veneziano, V.; Cringoli, G. Multivariate spatially-structured variability of ovine helminth infections. Geospat. Health 2007, 2, 97–104.
[76]  Hendrickx, G.; Biesemans, J.; de Deken, R. The Use of GIS in Veterinary Parasitology. In GIS and Spatial Analysis in Vet. Science; Durr, P., Gatrell, A., Eds.; CABI Publishing: Wallingford, UK, 2004; pp. 145–176.
[77]  Rinaldi, L.; Musella, V.; Biggeri, A.; Cringoli, G. New insights into the application of geographical information systems and remote sensing in veterinary parasitology. Geospat. Health 2006, 1, 33–47.
[78]  Bergquist, R.; Rinaldi, L. Health research based on geospatial tools: A timely approach in a changing environment. J. Helminthol. 2010, 84, 1–11, doi:10.1017/S0022149X09990484.
[79]  Geospatial health: Health applications in geospatial science. Available online: http://www.geospatialhealth.unina.it (accessed on 11 August 2013).
[80]  Morgan, E.R.; Milner-Gulland, E.J.; Torgerson, P.R.; Medley, G.F. Ruminating on complexity: Macroparasites of wildlife and livestock. Trends Ecol. Evol. 2004, 19, 181–188, doi:10.1016/j.tree.2004.01.011.
[81]  Morgan, E.R.; van Dijk, J. Climate and the epidemiology of gastrointestinal nematode infections of sheep in Europe. Vet. Parasitol. 2012, 189, 8–14, doi:10.1016/j.vetpar.2012.03.028.
[82]  Van Dijk, J.; David, G.P.; Baird, G.; Morgan, E.R. Back to the future: Developing hypotheses on the effects of climate change on ovine parasitic gastroenteritis from historical data. Vet. Parasitol. 2008, 158, 73–84, doi:10.1016/j.vetpar.2008.08.006.
[83]  Smith, G. Modeling of parasite populations—Gastrointestinal nematode models. Vet. Parasitol. 1994, 54, 127–143, doi:10.1016/0304-4017(94)90087-6.
[84]  Van Dijk, J.; Morgan, E.R. Variation in the hatching behaviour of Nematodirus battus: Polymorphic bet hedging? Int. J. Parasitol. 2010, 40, 675–681, doi:10.1016/j.ijpara.2009.11.002.
[85]  Kenyon, F.; Greer, A.W.; Coles, G.C.; Cringoli, G.; Papadopoulos, E.; Cabaret, J.; Berrag, B.; Varady, M.; van Wyk, J.A.; Thomas, E.; et al. The role of targeted selective treatments in the development of refugia-based approaches to the control of gastrointestinal nematodes of small ruminants. Vet. Parasitol. 2009, 164, 3–11, doi:10.1016/j.vetpar.2009.04.015.
[86]  Cooper, K.M.; Whelan, M.; Kennedy, D.G.; Trigueros, G.; Cannavan, A.; Boon, P.E.; Wapperom, D.; Danaher, M. ProSafeBeef and anthelmintic drug residues-a case study in collaborative application of multi-analyte mass spectrometry to enhance consumer safety. Anal. Bioanal. Chem. 2012, 404, 1623–1630, doi:10.1007/s00216-012-6310-2.
[87]  Imperiale, F.; Ortiz, P.; Cabrera, M.; Farias, C.; Sallovitz, J.M.; Iezzi, S.; Perez, J.; Alvarez, L.; Lanusse, C. Residual concentrations of the flukicidal compound triclabendazole in dairy cows’ milk and cheese. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 438–445, doi:10.1080/19440049.2010.551422.
[88]  Greer, A.W.; Kenyon, F.; Bartley, D.J.; Jackson, E.B.; Gordon, Y.; Donnan, A.A.; McBean, D.W.; Jackson, F. Development and field evaluation of a decision support model for anthelmintic treatments as part of a targeted selective treatment (TST) regime in lambs. Vet. Parasitol. 2009, 164, 12–20, doi:10.1016/j.vetpar.2009.04.017.
[89]  Cringoli, G.; Rinaldi, L.; Veneziano, V.; Mezzino, L.; Vercruysse, J.; Jackson, F. Evaluation of targeted selective treatments in sheep in Italy: Effects on faecal worm egg count and milk production in four case studies. Vet. Parasitol. 2009, 164, 36–43, doi:10.1016/j.vetpar.2009.04.010.
[90]  Gallidis, E.; Papadopoulos, E.; Ptoches, S.; Arsenos, G. The use of targeted selective treatments against gastrointestinal nematodes in milking sheep and goats in Greece based on parasitological and performance criteria. Vet. Parasitol. 2009, 164, 53–58, doi:10.1016/j.vetpar.2009.04.011.
[91]  H?glund, J.; Morrison, D.A.; Charlier, J.; Dimander, S.; Larrson, A. Targeted selective treatments for gastrointestinal nematodes in first-season grazing cattle based on mid-season daily weight gains. Vet. Parasitol. 2009, 164, 80–88, doi:10.1016/j.vetpar.2009.04.016.
[92]  Leask, R.; van Wyk, J.A.; Thompson, P.N.; Bath, G.F. The effect of application of the FAMACHA? system on selected production parameters in sheep. Small Rumin. Res. 2013, 110, 1–8, doi:10.1016/j.smallrumres.2012.07.026.
[93]  Gaba, S.; Cabaret, J.; Chylinski, C.; Sauve, C.; Cortet, J.; Silvestre, A. Can efficient management of sheep gastro-intestinal nematodes be based on random treatment? Vet. Parasitol. 2012, 190, 178–184, doi:10.1016/j.vetpar.2012.06.011.
[94]  Terrill, T.H.; Miller, J.E.; Burke, J.M.; Mosjidis, J.A.; Kaplan, R.M. Experiences with integrated concepts for the control of Haemonchus contortus in sheep and goats in the United States. Vet. Parasitol. 2012, 186, 28–37, doi:10.1016/j.vetpar.2011.11.043.
[95]  Van Wyk, J.A.; Reynecke, D.P. Blueprint for an automated specific decision support system for countering anthelmintic resistance in Haemonchus spp. at farm level. Vet. Parasitol. 2011, 177, 212–223, doi:10.1016/j.vetpar.2009.10.025.
[96]  Gauly, M.; Bollwein, H.; Breves, G.; Bruegemann, K.; Daenicke, S.; Das, G.; Demeler, J.; Hansen, H.; Isselstein, J.; Koenig, S.; et al. Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe—A review. Animal 2013, 7, 843–859, doi:10.1017/S1751731112002352.

Full-Text

comments powered by Disqus