全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Platinum and Palladium Polyamine Complexes as Anticancer Agents: The Structural Factor

DOI: 10.1155/2013/287353

Full-Text   Cite this paper   Add to My Lib

Abstract:

Since the introduction of cisplatin to oncology in 1978, Pt(II) and Pd(II) compounds have been intensively studied with a view to develop the improved anticancer agents. Polynuclear polyamine complexes, in particular, have attracted special attention, since they were found to yield DNA adducts not available to conventional drugs (through long-distance intra- and interstrand cross-links) and to often circumvent acquired cisplatin resistance. Moreover, the cytotoxic potency of these polyamine-bridged chelates is strictly regulated by their structural characteristics, which renders this series of compounds worth investigating and their synthesis being carefully tailored in order to develop third-generation drugs coupling an increased spectrum of activity to a lower toxicity. The present paper addresses the latest developments in the design of novel antitumor agents based on platinum and palladium, particularly polynuclear chelates with variable length aliphatic polyamines as bridging ligands, highlighting the close relationship between their structural preferences and cytotoxic ability. In particular, studies by vibrational spectroscopy techniques are emphasised, allowing to elucidate the structure-activity relationships (SARs) ruling anticancer activity. 1. Introduction Cancer represents one of the major causes of death in humans worldwide, only overcome by cardiovascular diseases, and represents a huge burden on society (both sociologically and economically). About 20 million cancer cases are expected to occur in the next two decades, which renders the quest for new and improved antineoplastic agents (namely, based on natural compounds [1]) an urgent issue in the field of Biomedicine and Human Health. Over the past decade, efforts have been made in the way of understanding the carcinogenesis process, which is recognised to consist in a progressive disorganisation at both the cellular and tissue levels. This knowledge is essential to develop new chemotherapeutic strategies, in order to control the incidence of the most recurrent cancer types. While many drug molecules are “organic” in nature, other elements in the periodic table, particularly metals, offer a much more diverse chemistry and have important therapeutic applications [2]. The use of metal-based compounds as therapeutic drugs dates back to over 5000 years. In modern days, the study of organometallic pharmaceuticals started with the pioneering work of K?pf and K?pf-Maier (in the late 1970’s), who investigated the antitumor activity of early transition metal cyclopentadienyl complexes [3]. Since

References

[1]  G. M. Cragg, P. G. Grothaus, and D. J. Newman, “Impact of natural products on developing new anti-cancer agents,” Chemical Reviews, vol. 109, no. 7, pp. 3012–3043, 2009.
[2]  A. E. Pegg, “Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy,” Cancer Research, vol. 48, no. 4, pp. 759–774, 1988.
[3]  H. K?pf and P. K?pf-Maier, “Titanocene dichloride–the first metallocene with cancerostatic activity,” Angewandte Chemie, vol. 18, no. 6, pp. 477–478, 1979.
[4]  T. Rau and R. van Eldik, Metal Ions in Biological Systems, New York, NY, USA, 1996.
[5]  C. Orvig and M. J. Abrams, “Medicinal inorganic chemistry: introduction,” Chemical Reviews, vol. 99, no. 9, pp. 2202–2203, 1999.
[6]  C. S. Allardyce, A. Dorcier, C. Scolaro, and P. J. Dyson, “Development of organometallic (organo-transition metal) pharmaceuticals,” Applied Organometallic Chemistry, vol. 19, no. 1, pp. 1–10, 2005.
[7]  P. J. Dyson and G. Sava, “Metal-based antitumour drugs in the post genomic era,” Dalton Transactions, no. 16, pp. 1929–1933, 2006.
[8]  K. B. Garbutcheon-Singh, M. P. Grant, B. W. Harper et al., “Transition metal based anticancer drugs,” Current Topics in Medicinal Chemistry, vol. 11, no. 5, pp. 521–542, 2011.
[9]  S. Gomez-Ruiz, D. Maksimovic-Ivanic, S. Mijatovic, and G. N. Kaluderovic, “On the discovery, biological effects, and use of cisplatin and metallocenes in anticancer chemotherapy,” Bioinorganic Chemistry and Applications, vol. 2012, Article ID 140284, 14 pages, 2012.
[10]  M. Gielen, Metal Based Antitumor Drugs, Freud, London, UK, 1988.
[11]  N. Farrell, Uses of Inorganic Chemistry in Medicine, Royal Society of Chemistry, Cambridge, UK, 1999.
[12]  S. P. Fricker, “Metal based drugs: from serendipity to design,” Dalton Transactions, no. 43, pp. 4903–4917, 2007.
[13]  M. J. Hannon, “Metal-based anticancer drugs: from a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology,” Pure and Applied Chemistry, vol. 79, no. 12, pp. 2243–2261, 2007.
[14]  S. H. van Rijt and P. J. Sadler, “Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs,” Drug Discovery Today, vol. 14, no. 23-24, pp. 1089–1097, 2009.
[15]  N. Farrell, “Polynuclear platinum drugs,” in Metal Complexes in Tumor Diagnosis and as Anticancer Agents, pp. 251–296, 2004.
[16]  M. Galanski, V. B. Arion, M. A. Jakupec, and B. K. Keppler, “Recent developments in the field of tumor-inhibiting metal complexes,” Current Pharmaceutical Design, vol. 9, no. 25, pp. 2078–2089, 2003.
[17]  B. Rosenberg, L. Vancamp, and T. Krigas, “Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode,” Nature, vol. 205, no. 4972, pp. 698–699, 1965.
[18]  B. Rosenberg, L. Vancamp, J. E. Trosko, and V. H. Mansour, “Platinum compounds: a new class of potent antitumour agents,” Nature, vol. 222, no. 5191, pp. 385–386, 1969.
[19]  B. Rosenberg and L. VanCamp, “The successful regression of large solid sarcoma 180 tumors by platinum compounds,” Cancer Research, vol. 30, no. 6, pp. 1799–1802, 1970.
[20]  M. Shimizu and B. Rosenberg, “A similar action to UV irradiation and a preferential inhibition of DNA synthesis in E. coli by antitumor platinum compounds,” Journal of Antibiotics, vol. 26, no. 4, pp. 243–245, 1973.
[21]  B. Rosenberg, “Platinum complexes for the treatment of cancer: why the search goes on?” in CisplatIn, pp. 1–27, Verlag Helvetica Chimica Acta, 1999.
[22]  O. Heby and L. Persson, “Molecular genetics of polyamine synthesis in eukaryotic cells,” Trends in Biochemical Sciences, vol. 15, no. 4, pp. 153–158, 1990.
[23]  A. Tamori, S. Nishiguchi, T. Kuroki et al., “Point mutation of ornithine decarboxylase gene in human hepatocellular carcinoma,” Cancer Research, vol. 55, no. 16, pp. 3500–3503, 1995.
[24]  M. Auvinen, A. Paasinen, L. C. Andersson, and E. Holtta, “Ornithine decarboxylase activity is critical for cell transformation,” Nature, vol. 360, no. 6402, pp. 355–358, 1992.
[25]  J. Janne, L. Alhonen, and P. Leinonen, “Polyamines: from molecular biology to clinical applications,” Annals of Medicine, vol. 23, no. 3, pp. 241–259, 1991.
[26]  K. Nishioka, Polyamines in Cancer: Basic Mechanisms and Clinical Approaches, Springer, Berlin, Germany, 1966.
[27]  A. Bonetti, T. Franceschi, P. Apostoli et al., “Cisplatin pharmacokinetics using a five-day schedule during repeated courses of chemotherapy in germ cell tumors,” Therapeutic Drug Monitoring, vol. 17, no. 1, pp. 25–32, 1995.
[28]  M. Lehman and G. Thomas, “Is concurrent chemotherapy and radiotherapy the new standard of care for locally advanced cervical cancer?” International Journal of Gynecological Cancer, vol. 11, no. 2, pp. 87–99, 2001.
[29]  P. J. Loehrer and L. H. Einhorn, “Drugs 5 years later—cisplatin,” Annals of Internal Medicine, vol. 100, no. 5, pp. 704–713, 1984.
[30]  R. F. Ozols, “Current status of chemotherapy for ovarian cancer,” Seminars in Oncology, vol. 22, no. 5, pp. 61–66, 1995.
[31]  A. L. Pinto and S. J. Lippard, “Binding of the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin) to DNA,” Biochimica et Biophysica Acta, vol. 780, no. 3, pp. 167–180, 1985.
[32]  J. L. Vanderveer and J. Reedijk, “Investigating antitumour drug mechanisms,” Chemistry in Britain, vol. 24, no. 8, pp. 775–780, 1988.
[33]  N. P. Johnson, J.-L. Butour, G. Villani et al., “Metal antitumor compounds: the mechanism of action of platinum complexes,” Progress in Clinical Biochemistry and Medicine, vol. 10, pp. 1–24, 1989.
[34]  P. M. Takahara, C. A. Frederick, and S. J. Lippard, “Crystal structure of the anticancer drug cisplatin bound to duplex DNA,” Journal of the American Chemical Society, vol. 118, no. 49, pp. 12309–12321, 1996.
[35]  T. W. Hambley, “Platinum binding to DNA: structural controls and consequences,” Journal of the Chemical Society, Dalton Transactions, no. 19, pp. 2711–2718, 2001.
[36]  R. N. Bose, “Biomolecular targets for platinum antitumor drugs,” Mini Reviews in Medicinal Chemistry, vol. 2, no. 2, pp. 103–111, 2002.
[37]  J. Reedijk, “New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3611–3616, 2003.
[38]  D. Wang and S. J. Lippard, “Cellular processing of platinum anticancer drugs,” Nature Reviews Drug Discovery, vol. 4, no. 4, pp. 307–320, 2005.
[39]  Y. Jung and S. J. Lippard, “Direct cellular responses to platinum-induced DNA damage,” Chemical Reviews, vol. 107, no. 5, pp. 1387–1407, 2007.
[40]  A. M. Pizarro and P. J. Sadler, “Unusual DNA binding modes for metal anticancer complexes,” Biochimie, vol. 91, no. 10, pp. 1198–1211, 2009.
[41]  Y. P. Ho, S. C. F. Au-Yeung, and K. K. W. To, “Platinum-based anticancer agents: innovative design strategies and biological perspectives,” Medicinal Research Reviews, vol. 23, no. 5, pp. 633–655, 2003.
[42]  J. T. Hartmann and H. P. Lipp, “Toxicity of platinum compounds,” Expert Opinion on Pharmacotherapy, vol. 4, no. 6, pp. 889–901, 2003.
[43]  S. Raguz and E. Yagüe, “Resistance to chemotherapy: new treatments and novel insights into an old problem,” British Journal of Cancer, vol. 99, no. 3, pp. 387–391, 2008.
[44]  X. Yao, K. Panichpisal, N. Kurtzman, and K. Nugent, “Cisplatin nephrotoxicity: a review,” The American Journal of the Medical Sciences, vol. 334, no. 2, pp. 115–124, 2007.
[45]  A. M. Florea and D. Büsselberg, “Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects,” Cancers, vol. 3, no. 1, pp. 1351–1371, 2011.
[46]  T. Boulikas and M. Vougiouka, “Cisplatin and platinum drugs at the molecular level,” Oncology reports, vol. 10, no. 6, pp. 1663–1682, 2003.
[47]  G. Momekov and D. Momekova, “Recent developments in antitumor platinum coordination compounds,” Expert Opinion on Therapeutic Patents, vol. 16, no. 10, pp. 1383–1403, 2006.
[48]  L. Kelland, “The resurgence of platinum-based cancer chemotherapy,” Nature Reviews Cancer, vol. 7, no. 8, pp. 573–584, 2007.
[49]  N. J. Wheate, S. Walker, G. E. Craig, and R. Oun, “The status of platinum anticancer drugs in the clinic and in clinical trials,” Dalton Transactions, vol. 39, no. 35, pp. 8113–8127, 2010.
[50]  X. Wang, “Fresh platinum complexes with promising antitumor activity,” Anti-Cancer Agents in Medicinal Chemistry, vol. 10, no. 5, pp. 396–411, 2010.
[51]  U. Olszewski and G. Hamilton, “A better platinum-based anticancer drug yet to come?” Anti-Cancer Agents in Medicinal Chemistry, vol. 10, no. 4, pp. 293–301, 2010.
[52]  S. Komeda, T. Moulaei, M. Chikuma et al., “The phosphate clamp: a small and independent motif for nucleic acid backbone recognition,” Nucleic Acids Research, vol. 39, no. 1, pp. 325–336, 2011.
[53]  C. Monneret, “Platinum anticancer drugs. From serendipity to rational design,” Annales Pharmaceutiques Fran?aises, vol. 69, no. 6, pp. 286–295, 2011.
[54]  P. C. Bruijnincx and P. J. Sadler, “New trends for metal complexes with anticancer activity,” Current Opinion in Chemical Biology, vol. 12, no. 2, pp. 197–206, 2008.
[55]  S. San-Marina, R. Gupta, and I. Iosif, “Computational strategies for drug reprofiling,” Journal of Proteomics and Bioinformatics, vol. 4, no. 11, pp. 242–244, 2011.
[56]  R. B. Weiss and M. C. Christian, “New cisplatin analogues in development: a review,” Drugs, vol. 46, no. 3, pp. 360–377, 1993.
[57]  I. Ott and R. Gust, “Preclinical and clinical studies on the use of platinum complexes for breast cancer treatment,” Anti-Cancer Agents in Medicinal Chemistry, vol. 7, no. 1, pp. 95–110, 2007.
[58]  R. Williams, “Discontinued drugs in 2010: oncology drugs,” Expert Opinion on Investigational Drugs, vol. 20, no. 11, pp. 1479–1496, 2011.
[59]  S. A. S. Ghazanfar, J. T. Edsall, and D. V. Myers, “Raman spectra of diamines and diammonium ions: effects of ionization on carbon-hydrogen stretching frequencies,” Journal of the American Chemical Society, vol. 86, no. 4, pp. 559–564, 1964.
[60]  A. Bertoluzza, C. Fagnano, P. Finelli, M. A. Morelli, R. Simoni, and R. Tosi, “Raman and infrared-spectra of spermidine and spermine and their hydrochlorides and phosphates as a basis for the study of the interactions between polyamines and nucleic-acids,” Journal of Raman Spectroscopy, vol. 14, no. 6, pp. 386–394, 1983.
[61]  L. A. E. Batista de Carvalho, A. M. Amorim da Costa, M. L. Duarte, and J. J. C. Teixeira-Dias, “Conformational studies of n-propylamine by combined ab initio MO calculations and Raman spectroscopy,” Spectrochimica Acta Part A: Molecular Spectroscopy, vol. 44, no. 7, pp. 723–732, 1988.
[62]  L. A. E. Batista de Carvalho, A. M. Amorim da Costa, and J. J. C. Teixeira-Dias, “A comparative ab initio MO study of internal rotations in ethylamine and n-propylamine,” Journal of Molecular Structure: THEOCHEM, vol. 205, no. C, pp. 327–351, 1990.
[63]  L. A. E. Batista de Carvalho, J. J. C. Teixeira-Dias, and R. Fausto, “A molecular mechanics force field for conformational analysis of aliphatic acyclic amines,” Structural Chemistry, vol. 1, no. 6, pp. 533–542, 1990.
[64]  L. A. E. Batista de Carvalho, L. E. Louren?o, and M. P. M. Marques, “Conformational study of 1,2-diaminoethane by combined ab initio MO calculations and Raman spectroscopy,” Journal of Molecular Structure, vol. 482-483, pp. 639–646, 1999.
[65]  M. P. M. Marques and L. A. E. Batista de Carvalho, “Theoretical approach to the conformational preferences of putrescine,” in Cost 917: Biogenically Active Amines in Food, pp. 122–129, European Communities, Luxembourg, 2000.
[66]  M. P. M. Marques, L. A. E. Batista de Carvalho, and J. Tomkinson, “Study of biogenic and -polyamines by combined inelastic neutron scattering and Raman spectroscopies and by ab initio molecular orbital calculations,” The Journal of Physical Chemistry A, vol. 106, no. 11, pp. 2473–2482, 2002.
[67]  A. M. Amorim da Costa, M. P. M. Marques, and L. A. E. Batista de Carvalho, “The carbon-hydrogen stretching region of the Raman spectra of 1,6-hexanediamine: N-deuteration, ionisation and temperature effects,” Vibrational Spectroscopy, vol. 29, no. 1-2, pp. 61–67, 2002.
[68]  A. M. Amorim da Costa, M. P. M. Marques, and L. A. E. Batista de Carvalho, “Raman spectra of putrescine, spermidine and spermine polyamines and their N-deuterated and N-ionized derivatives,” Journal of Raman Spectroscopy, vol. 34, no. 5, pp. 357–366, 2003.
[69]  A. M. Amorim da Costa, M. P. M. Marques, and L. A. E. Batista de Carvalho, “Intra- versus interchain interactions in -polyamines: a Raman spectroscopy study,” Vibrational Spectroscopy, vol. 35, no. 1-2, pp. 165–171, 2004.
[70]  A. M. Amado, J. C. Otero, M. P. M. Marques, and L. A. E. Batista de Carvalho, “Spectroscopic and theoretical studies on solid 1,2-ethylenediamine dihydrochloride salt,” ChemPhysChem, vol. 5, no. 12, pp. 1837–1847, 2004.
[71]  L. A. E. Batista de Carvalho, M. P. M. Marques, and J. Tomkinson, “Transverse acoustic modes of biogenic and -polyamines: a study by inelastic neutron scattering and raman spectroscopies coupled to DFT calculations,” The Journal of Physical Chemistry A, vol. 110, no. 47, pp. 12947–12954, 2006.
[72]  M. P. M. Marques and L. A. E. Batista de Carvalho, “Vibrational spectroscopy studies on linear polyamines,” Biochemical Society Transactions, vol. 35, no. 2, pp. 374–380, 2007.
[73]  E. W. Gerner and F. L. Meyskens, “Polyamines and cancer: old molecules, new understanding,” Nature Reviews Cancer, vol. 4, no. 10, pp. 781–792, 2004.
[74]  E. Agostinelli, M. P. M. Marques, R. Calheiros et al., “Polyamines: fundamental characters in chemistry and biology,” Amino Acids, vol. 38, no. 2, pp. 393–403, 2010.
[75]  C. W. Porter, R. J. Bernacki, J. Miller, and R. J. Bergeron, “Antitumor activity of N1,N11-bis(ethyl)norspermine against human melanoma xenografts and possible biochemical correlates of drug action,” Cancer Research, vol. 53, no. 3, pp. 581–586, 1993.
[76]  R. A. Casero and P. M. Woster, “Recent advances in the development of polyamine analogues as antitumor agents,” Journal of Medicinal Chemistry, vol. 52, no. 15, pp. 4551–4573, 2009.
[77]  T. M. Silva, S. Oredsson, L. Persson, P. Woster, and M. P. Marques, “Novel Pt(II) and Pd(II) complexes with polyamine analogues: synthesis and vibrational analysis,” Journal of Inorganic Biochemistry, vol. 108, pp. 1–7, 2012.
[78]  N. Seiler, “Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 2. Structural analogues and derivatives,” Current Drug Targets, vol. 4, no. 7, pp. 565–585, 2003.
[79]  N. P. Farrell, S. G. de Almeida, and K. A. Skov, “Bis(platinum) complexes containing two platinum cis-diammine units. Synthesis and initial DNA-binding studies,” Journal of the American Chemical Society, vol. 110, no. 15, pp. 5018–5019, 1988.
[80]  N. Farrell, Y. Qu, L. Feng, and B. van Houten, “Comparison of chemical reactivity, cytotoxicity, interstrand cross-linking and DNA sequence specificity of bis(platinum) complexes containing monodentate or bidentate coordination spheres with their monomeric analogues,” Biochemistry, vol. 29, no. 41, pp. 9522–9531, 1990.
[81]  N. Farrell, “Nonclassical platinum antitumor agents: perspectives for design and development of new drugs complementary to cisplatin,” Cancer Investigation, vol. 11, no. 5, pp. 578–589, 1993.
[82]  H. Rauter, R. Di Domenico, E. Mental, A. Oliva, Y. Qu, and N. Farrell, “Selective platination of biologically relevant polyamines. Linear coordinating spermidine and spermine as amplifying linkers in dinuclear platinum complexes,” Inorganic Chemistry, vol. 36, no. 18, pp. 3919–3927, 1997.
[83]  N. Farrell, “DNA binding of nonclassical platinum antitumor complexes,” in Advances in DNA Sequence-Specific Agents, pp. 179–199, Elsevier, Philadelphia, Pa, USA, 1998.
[84]  V. Brabec, J. Ka?párková, O. Vrána et al., “DNA modifications by a novel bifunctional trinuclear platinum Phase I anticancer agent,” Biochemistry, vol. 38, no. 21, pp. 6781–6790, 1999.
[85]  N. Farrell, “Polynuclear charged platinum compounds as a new class of anticancer agents. Toward a new paradigm,” in Platinum-Based Drugs in Cancer Therapy, Human Press, Totowa, NJ, USA, 2000.
[86]  C. Manzotti, G. Pratesi, E. Menta et al., “BBR 3464: a novel triplatinum complex, exhibiting a preclinical profile of antitumor efficacy different from cisplatin,” Clinical Cancer Research, vol. 6, no. 7, pp. 2626–2634, 2000.
[87]  A. S. Abu-Surrah and M. Kettunen, “Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin,” Current Medicinal Chemistry, vol. 13, no. 11, pp. 1337–1357, 2006.
[88]  A. S. Abu-Surrah, H. H. Al-Sa’doni, and M. Y. Abdalla, “Palladium-based chemotherapeutic agents: routes toward complexes with good antitumor activity,” Cancer Therapy, vol. 6, pp. 1–10, 2008.
[89]  A. Hegmans, S. J. Berners-Price, M. S. Davies, D. S. Thomas, A. S. Humphreys, and N. Farrell, “Long range 1,4 and 1,6-interstrand cross-links formed by a trinuclear platinum complex. Minor groove preassociation affects kinetics and mechanism of cross-link formation as well as adduct structure,” Journal of the American Chemical Society, vol. 126, no. 7, pp. 2166–2180, 2004.
[90]  M. L. González, J. M. Tercero, A. Matilla et al., “Cis-dichloro( -diamino carboxylate ethyl ester)palladium(II) as palladium(II) versus platinum(II) model anticancer drugs: synthesis, solution equilibria of their aqua, hydroxo, and/or chloro species, and in vitro/in vivo DNA-binding properties,” Inorganic Chemistry, vol. 36, no. 9, pp. 1806–1812, 1997.
[91]  B. B. Zmejkovski, G. N. Kaluderovi?, S. Gómez-Ruiz et al., “Palladium(II) complexes with R2edda-derived ligands. Part II. Synthesis, characterization and in vitro antitumoral studies of R2eddip esters and palladium(II) complexes,” European Journal of Medicinal Chemistry, vol. 44, no. 9, pp. 3452–3458, 2009.
[92]  J. M. Vuji?, M. Cvijovi?, G. N. Kaluerovi? et al., “Palladium(II) complexes with R2edda derived ligands. Part IV. -dialkyl esters of (S,S)-ethylenediamine- -di-2-(4-methyl)- pentanoic acid dihydrochloride and their palladium(II) complexes: synthesis, characterization and in vitro antitumoral activity against chronic lymphocytic leukemia (CLL) cells,” European Journal of Medicinal Chemistry, vol. 45, no. 9, pp. 3601–3606, 2010.
[93]  G. Zhao, H. Lin, P. Yu et al., “Ethylenediamine-palladium(II) complexes with pyridine and its derivatives: synthesis, molecular structure and initial antitumor studies,” Journal of Inorganic Biochemistry, vol. 73, no. 3, pp. 145–149, 1999.
[94]  N. Jain, R. Mittal, T. S. Srivastava, K. Satyamoorthy, and M. P. Chitnis, “Synthesis, characterization, DNA binding, and cytotoxic studies of dinuclear complexes of palladium(II) and platinum(II) with 2,2-bipyridine and -diaminoalkane- -diacetic acid,” Journal of Inorganic Biochemistry, vol. 53, no. 2, pp. 79–94, 1994.
[95]  G. Zhao, H. Lin, S. Zhu, H. Sun, and Y. Chen, “Dinuclear palladium(II) complexes containing two monofunctional [Pd(en)(pyridine)Cl]+ units bridged by Se or S. Synthesis, characterization, cytotoxicity and kinetic studies of DNA-binding,” Journal of Inorganic Biochemistry, vol. 70, no. 3-4, pp. 219–226, 1998.
[96]  G. Faraglia, D. Fregona, S. Sitran et al., “Platinum(II) and palladium(II) complexes with dithiocarbamates and amines: synthesis, characterization and cell assay,” Journal of Inorganic Biochemistry, vol. 83, no. 1, pp. 31–40, 2001.
[97]  A. I. Anzellotti, M. Sabat, and N. Farrell, “Covalent and noncovalent interactions for [metal(dien)nucleobase] 2+ complexes with L-tryptophan derivatives: formation of palladium-tryptophan species by nucleobase substitution under biologically relevant conditions,” Inorganic Chemistry, vol. 45, no. 4, pp. 1638–1645, 2006.
[98]  I. Kostova, “Platinum complexes as anticancer agents,” Recent Patents on Anti-Cancer Drug Discovery, vol. 1, no. 1, pp. 1–22, 2006.
[99]  N. P. Farrell, “Platinum formulations as anticancer drugs clinical and pre-clinical studies,” Current Topics in Medicinal Chemistry, vol. 11, no. 21, pp. 2623–2631, 2011.
[100]  S. Ahmad, A. A. Isab, and S. Ali, “Structural and mechanistic aspects of platinum anticancer agents,” Transition Metal Chemistry, vol. 31, no. 8, pp. 1003–1016, 2006.
[101]  J. E. Rosenberg, V. K. Weinberg, W. K. Kelly et al., “Activity of second-line chemotherapy in docetaxel-refractory hormone-refractory prostate cancer patients: randomized phase 2 study of ixabepilone or mitoxantrone and prednisone,” Cancer, vol. 110, no. 3, pp. 556–563, 2007.
[102]  S. Komeda, “Unique platinum-DNA interactions may lead to more effective platinum-based antitumor drugs,” Metallomics, vol. 3, no. 7, pp. 650–655, 2011.
[103]  M. M. Regan, E. K. O'Donnell, W. K. Kelly et al., “Efficacy of carboplatin-taxane combinations in the management of castration-resistant prostate cancer: a pooled analysis of seven prospective clinical trials,” Annals of Oncology, vol. 21, no. 2, pp. 312–318, 2010.
[104]  S. S. Hah, K. M. Stivers, R. W. de Vere White, and P. T. Henderson, “Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry,” Chemical Research in Toxicology, vol. 19, no. 5, pp. 622–626, 2006.
[105]  Y. Kidani, K. Inagaki, R. Saito, and S. Tsukagoshi, “Synthesis and anti tumor activities of platinum (II) complexes of 1,2 diaminocyclohexane isomers and their related derivatives,” Journal of Clinical Hematology and Oncology, vol. 7, no. 1, pp. 197–209, 1977.
[106]  Y. Kidani, M. Noji, and T. Tashiro, “Antitumor activity of platinum(II) complexes of 1,2-diamino-cyclohexane isomers,” Gann, vol. 71, no. 5, pp. 637–643, 1980.
[107]  E. Raymond, S. Faivre, S. Chaney, J. Woynarowski, and E. Cvitkovic, “Cellular and molecular pharmacology of oxaliplatin,” Molecular Cancer Therapeutics, vol. 1, no. 3, pp. 227–235, 2002.
[108]  B. Spingler, D. A. Whittington, and S. J. Lippard, “2.4 ? crystal structure of an oxaliplatin 1,2-d(GpG) intrastrand Cross-link in a DNA dodecamer duplex,” Inorganic Chemistry, vol. 40, no. 22, pp. 5596–5602, 2001.
[109]  T. A. K. Al-Allaf, L. J. Rashan, D. Steinborn, K. Merzweiler, and C. Wagner, “Platinum(II) and palladium(II) complexes analogous to oxaliplatin with different cyclohexyldicarboxylate isomeric anions and their in vitro antitumour activity. Structural elucidation of [Pt(C2O4)(cis-dach)],” Transition Metal Chemistry, vol. 28, no. 6, pp. 717–721, 2003.
[110]  M. Galanski, A. Yasemi, S. Slaby et al., “Synthesis, crystal structure and cytotoxicity of new oxaliplatin analogues indicating that improvement of anticancer activity is still possible,” European Journal of Medicinal Chemistry, vol. 39, no. 8, pp. 707–714, 2004.
[111]  M. Noji, R. Kizu, Y. Takeda et al., “Preparation of antitumor oxaliplatin/cisplatin docking dinuclear platinum complex,” Biomedicine & Pharmacotherapy, vol. 59, no. 5, pp. 224–229, 2005.
[112]  A. Bhargava and U. N. Vaishampayan, “Satraplatin: leading the new generation of oral platinum agents,” Expert Opinion on Investigational Drugs, vol. 18, no. 11, pp. 1787–1797, 2009.
[113]  L. R. Kelland, “An update on satraplatin: the first orally available platinum anticancer drug,” Expert Opinion on Investigational Drugs, vol. 9, no. 6, pp. 1373–1382, 2000.
[114]  L. Kelland, “Broadening the clinical use of platinum drug-based chemotherapy with new analogues: satraplatin and picoplatin,” Expert Opinion on Investigational Drugs, vol. 16, no. 7, pp. 1009–1021, 2007.
[115]  H. Choy, C. Park, and M. Yao, “Current status and future prospects for satraplatin, an oral platinum analogue,” Clinical Cancer Research, vol. 14, no. 6, pp. 1633–1638, 2008.
[116]  E. Fokkema, H. J. M. Groen, M. N. Helder, E. G. E. de Vries, and C. Meijer, “JM216-, JM118-, and cisplatin-induced cytotoxicity in relation to platinum-DNA adduct formation, glutathione levels and p53 status in human tumour cell lines with different sensitivities to cisplatin,” Biochemical Pharmacology, vol. 63, no. 11, pp. 1989–1996, 2002.
[117]  C. Sessa, C. Minoia, A. Ronchi, et al., “Phase I clinical and pharmacokinetic study of the oral platinum analogue JM216 given daily for 14 days,” Annals of Oncology, vol. 9, no. 12, pp. 1315–1322, 1998.
[118]  M. Kalimutho, A. Minutolo, S. Grelli et al., “Satraplatin (JM-216) mediates G2/M cell cycle arrest and potentiates apoptosis via multiple death pathways in colorectal cancer cells thus overcoming platinum chemo-resistance,” Cancer Chemotherapy and Pharmacology, vol. 67, no. 6, pp. 1299–1312, 2011.
[119]  G. Samimi and S. B. Howell, “Modulation of the cellular pharmacology of JM118, the major metabolite of satraplatin, by copper influx and efflux transporters,” Cancer Chemotherapy and Pharmacology, vol. 57, no. 6, pp. 781–788, 2006.
[120]  C. N. Sternberg, D. P. Petrylak, O. Sartor et al., “Multinational, double-blind, phase III study of prednisone and either satraplatin or placebo in patients with castrate-refractory prostate cancer progressing after prior chemotherapy: the SPARC trial,” Journal of Clinical Oncology, vol. 27, no. 32, pp. 5431–5438, 2009.
[121]  D. P. Petrylak, O. Sartor, J. Witjes et al., “A phase iii, randomized, double-blind trial of satraplatin and prednisone vs placebo and prednisone for patients with hormone refractory prostate cancer (HRPC),” in Proceedings of Prostate Cancer Symposium, 2007.
[122]  J. Holford, F. Raynaud, B. A. Murrer et al., “Chemical, biochemical and pharmacological activity of the novel sterically hindered platinum co-ordination complex, cis-[amminedichloro(2-methylpyridine)] platinum(II) (AMD473),” Anti-Cancer Drug Design, vol. 13, no. 1, pp. 1–18, 1998.
[123]  P. Beale, I. Judson, A. O'Donnell et al., “A phase I clinical and pharmacological study of cis-diamminedichloro(2-methylpyridine) platinum II (AMD473),” British Journal of Cancer, vol. 88, no. 7, pp. 1128–1134, 2003.
[124]  A. R. Battle, R. Choi, D. E. Hibbs, and T. W. Hambley, “Platinum(IV) analogues of AMD473 (cis-[PtCl2(NH3)(2-picoline)]): preparative, structural, and electrochemical studies,” Inorganic Chemistry, vol. 45, no. 16, pp. 6317–6322, 2006.
[125]  Y. Chen, Z. J. Guo, S. Parsons, and P. J. Sadler, “Stereospecific and kinetic control over the hydrolysis of a sterically hindered platinum picoline anticancer complex,” Chemistry, vol. 4, no. 4, pp. 672–676, 1998.
[126]  J. Holford, S. Y. Sharp, B. A. Murrer, M. Abrams, and L. R. Kelland, “In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473,” British Journal of Cancer, vol. 77, no. 3, pp. 366–373, 1998.
[127]  K. A. Gelmon, D. Stewart, K. N. Chi et al., “A phase I study of AMD473 and docetaxel given once every 3 weeks in patients with advanced refractory cancer: a national cancer institute of Canada-clinical trials group trial, IND 131,” Annals of Oncology, vol. 15, no. 7, pp. 1115–1122, 2004.
[128]  S. Y. Sharp, C. F. O'Neill, P. Rogers, F. E. Boxall, and L. R. Kelland, “Retention of activity by the new generation platinum agent AMD0473 in four human tumour cell lines possessing acquired resistance to oxaliplatin,” European Journal of Cancer, vol. 38, no. 17, pp. 2309–2315, 2002.
[129]  C. T. Research, “Poniard pharmaceuticals announces final top-line results from phase 1 trial demonstrating positive bioavailability with oral picoplatin,” in Oncology Business Week, 2008.
[130]  P. Sood, K. Bruce Thurmond 2nd, J. E. Jacob et al., “Synthesis and characterization of AP5346, a novel polymer-linked diaminocyclohexyl platinum chemotherapeutic agent,” Bioconjugate Chemistry, vol. 17, no. 5, pp. 1270–1279, 2006.
[131]  S. B. Howell, “The design and development of the tumor-targeting nanopolymer dach platinum conjugate ap5346,” in PlatInum and Other Heavy Metal Compounds in Cancer Chemotherapy, pp. 33–39, Humana Press, Totowa, NJ, USA, 2009.
[132]  J. R. Rice, J. L. Gerberich, D. P. Nowotnik, and S. B. Howell, “Preclinical efficacy and pharmacokinetics of AP5346, a novel diaminocyclohexane-platinum tumor-targeting drug delivery system,” Clinical Cancer Research, vol. 12, no. 7, pp. 2248–2254, 2006.
[133]  D. P. Nowotnik and E. Cvitkovic, “ProlindacTM (AP5346): a review of the development of an HPMA DACH platinum polymer therapeutic,” Advanced Drug Delivery Reviews, vol. 61, no. 13, pp. 1214–1219, 2009.
[134]  D. P. Nowotnik, “AP5346 (ProLindac), a dach platinum polymer conjugate in Phase II trials against ovarian cancer,” Current Bioactive Compounds, vol. 7, no. 1, pp. 21–26, 2011.
[135]  M. Campone, J. M. Rademaker-Lakhai, J. Bennouna et al., “Phase I and pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate, administered weekly for three out of every 4 weeks to advanced solid tumor patients,” Cancer Chemotherapy and Pharmacology, vol. 60, no. 4, pp. 523–533, 2007.
[136]  G. P. Stathopoulos, T. Boulikas, M. Vougiouka et al., “Pharmacokinetics and adverse reactions of a new liposomal cisplatin (Lipoplatin): phase I study,” Oncology Reports, vol. 13, no. 4, pp. 589–595, 2005.
[137]  D. B. Fenske and P. R. Cullis, “Liposomal nanomedicines,” Expert Opinion on Drug Delivery, vol. 5, no. 1, pp. 25–44, 2008.
[138]  S. Bryde and A. I. P. M. de Kroon, “Nanocapsules of platinum anticancer drugs: development towards therapeutic use,” Future Medicinal Chemistry, vol. 1, no. 8, pp. 1467–1480, 2009.
[139]  M. I. Koukourakis, A. Giatromanolaki, M. Pitiakoudis et al., “Concurrent liposomal cisplatin (Lipoplatin), 5-fluorouracil and radiotherapy for the treatment of locally advanced gastric cancer: a phase I/II study,” International Journal of Radiation Oncology Biology Physics, vol. 78, no. 1, pp. 150–155, 2010.
[140]  N. Seetharamu, E. Kim, H. Hochster, F. Martin, and F. Muggia, “Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer,” Anticancer Research, vol. 30, no. 2, pp. 541–545, 2010.
[141]  G. P. Stathopoulos, T. Boulikas, A. Kourvetaris, and J. Stathopoulos, “Liposomal oxaliplatin in the treatment of advanced cancer: a phase I study,” Anticancer Research, vol. 26, no. 2 B, pp. 1489–1493, 2006.
[142]  T. Tippayamontri, R. Kotb, B. Paquette, and L. Sanche, “Cellular uptake and cytoplasm / DNA distribution of cisplatin and oxaliplatin and their liposomal formulation in human colorectal cancer cell HCT116,” Investigational New Drugs, vol. 29, no. 6, pp. 1321–1327, 2011.
[143]  G. Charest, L. Sanche, D. Fortin, D. Mathieu, and B. Paquette, “Glioblastoma treatment: bypassing the toxicity of platinum compounds by using liposomal formulation and increasing treatment efficiency with concomitant radiotherapy,” International Journal of Radiation Oncology Biology Physics, vol. 84, no. 1, pp. 244–249, 2012.
[144]  I. Ali, Rahis-Uddin, K. Salim, M. A. Rather, W. A. Wani, and A. Haque, “Advances in nano drugs for cancer chemotherapy,” Current Cancer Drug Targets, vol. 11, no. 2, pp. 135–146, 2011.
[145]  S. Qian, C. Li, and Z. Zuo, “Pharmacokinetics and disposition of various drug loaded liposomes,” Current Drug Metabolism, vol. 13, no. 4, pp. 372–395, 2012.
[146]  S. P. Sahane, A. K. Nikhar, S. Bhaskaran, and D. R. Mundhada, “Nanotechnology in cancer chemotherapy,” International Journal of Pharmacy and Technology, vol. 4, no. 2, pp. 2085–2099, 2012.
[147]  T. Boulikas, “Low toxicity and anticancer activity of a novel liposomal cisplatin (lipoplatin) in mouse xenografts,” Oncology Reports, vol. 12, no. 1, pp. 3–12, 2004.
[148]  T. Boulikas, “Molecular mechanisms of cisplatin and its liposomally encapsulated form, . as a chemotherapy and antiangiogenesis drug,” Cancer Therapy, vol. 5, pp. 351–376, 2007.
[149]  T. Boulikas, G. P. Stathopoulos, N. Volakakis, and M. Vougiouka, “Systemic lipoplatin infusion results in preferential tumor uptake in human studies,” Anticancer Research, vol. 25, no. 4, pp. 3031–3040, 2005.
[150]  C. M. Lee, T. Tanaka, T. Murai et al., “Novel chondroitin sulfate-binding cationic liposomes loaded with cisplatin efficiently suppress the local growth and liver metastasis of tumor cells in vivo,” Cancer Research, vol. 62, no. 15, pp. 4282–4288, 2002.
[151]  P. Devarajan, R. Tarabishi, J. Mishra et al., “Low renal toxicity of lipoplatin compared to cisplatin in animals,” Anticancer Research, vol. 24, no. 4, pp. 2193–2200, 2004.
[152]  C. Arienti, A. Tesei, A. Ravaioli et al., “Activity of lipoplatin in tumor and in normal cells in vitro,” Anti-Cancer Drugs, vol. 19, no. 10, pp. 983–990, 2008.
[153]  T. Boulikas, “Clinical overview on : a successful liposomal formulation of cisplatin,” Expert Opinion on Investigational Drugs, vol. 18, no. 8, pp. 1197–1218, 2009.
[154]  G. P. Stathopoulos, D. Antoniou, J. Dimitroulis, J. Stathopoulos, K. Marosis, and P. Michalopoulou, “Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer,” Cancer Chemotherapy and Pharmacology, vol. 68, no. 4, pp. 945–950, 2011.
[155]  N. J. Wheate and J. G. Collins, “Multi-nuclear platinum complexes as anti-cancer drugs,” Coordination Chemistry Reviews, vol. 241, no. 1-2, pp. 133–145, 2003.
[156]  N. J. Wheate and J. G. Collins, “Multi-nuclear platinum drugs: a new paradigm in chemotherapy,” Current Medicinal Chemistry—Anti-Cancer Agents, vol. 5, no. 3, pp. 267–279, 2005.
[157]  J. B. Mangrum and N. P. Farrell, “Excursions in polynuclear platinum DNA binding,” Chemical Communications, vol. 46, no. 36, pp. 6640–6650, 2010.
[158]  R. A. Ruhayel, J. S. Langner, M. J. Oke, S. J. Berners-Price, I. Zgani, and N. P. Farrell, “Chimeric platinum-polyamines and DNA binding. Kinetics of DNA interstrand cross-link formation by dinuclear platinum complexes with polyamine linkers,” Journal of the American Chemical Society, vol. 134, no. 16, pp. 7135–7146, 2012.
[159]  Y. Qu, N. J. Scarsdale, M. C. Tran, and N. P. Farrell, “Cooperative effects in long-range 1,4 DNA-DNA interstrand cross-links formed by polynuclear platinum complexes: an unexpected syn orientation of adenine bases outside the binding sites,” Journal of Biological Inorganic Chemistry, vol. 8, no. 1-2, pp. 19–28, 2003.
[160]  K. Chvalova, J. Kasparkova, N. Farrell, and V. Brabec, “Deoxyribonuclease I footprinting reveals different DNA binding modes of bifunctional platinum complexes,” The FEBS Journal, vol. 273, no. 15, pp. 3467–3478, 2006.
[161]  E. Monti, M. Gariboldi, A. Maiocchi et al., “Cytotoxicity of cis-platinum(II) conjugate models. The effect of chelating arms and leaving groups on cytotoxicity: a quantitative structure-activity relationship approach,” Journal of Medicinal Chemistry, vol. 48, no. 3, pp. 857–866, 2005.
[162]  M. R. Costa Couri, M. Vieira de Almeida, A. P. Soares Fontes et al., “Synthesis of polyamines from ethylenediamine and their platinum(II) complexes, potential antitumor agents,” European Journal of Inorganic Chemistry, no. 9, pp. 1868–1874, 2006.
[163]  Q. Liu, Y. Qu, R. van Antwerpen, and N. Farrell, “Mechanism of the membrane interaction of polynuclear platinum anticancer agents. Implications for cellular uptake,” Biochemistry, vol. 45, no. 13, pp. 4248–4256, 2006.
[164]  J. W. Williams, Y. Qu, G. H. Bulluss, E. Alvorado, and N. P. Farrell, “Dinuclear platinum complexes with biological relevance based on the 1,2-diaminocyclohexane carrier ligand,” Inorganic Chemistry, vol. 46, no. 15, pp. 5820–5822, 2007.
[165]  S. M. Fiuza, A. M. Amado, P. J. Oliveira, V. A. Sard?o, L. A. E. Batista de Carvalho, and M. P. M. Marques, “Pt(II) vs Pd(II) polyamine complexes as new anticancer drugs: a structure-activity study,” Letters in Drug Design and Discovery, vol. 3, no. 3, pp. 149–151, 2006.
[166]  L. J. Teixeira, M. Seabra, E. Reis et al., “Cytotoxic activity of metal complexes of biogenic polyamines: polynuclear platinum(II) chelates,” Journal of Medicinal Chemistry, vol. 47, no. 11, pp. 2917–2925, 2004.
[167]  M. P. M. Marques, T. Gir?o, M. C. Pedroso de Lima, A. Gameiro, E. Pereira, and P. Garcia, “Cytotoxic effects of metal complexes of biogenic polyamines. I. Platinum(II) spermidine compounds: prediction of their antitumour activity,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1589, no. 1, pp. 63–70, 2002.
[168]  A. S. Soares, S. M. Fiuza, M. J. Gon?alves, L. A. E. Batista de Carvalho, M. P. M. Marques, and A. M. Urbano, “Effect of the metal center on the antitumor activity of the analogous dinuclear spermine chelates (PdCl2)(2)(Spermine) and (PtCl2)(2)(Spermine),” Letters in Drug Design and Discovery, vol. 4, no. 7, pp. 460–463, 2007.
[169]  C. Navarro-Ranninger, F. Zamora, J. M. Perez et al., “Palladium(II) salt and complexes of spermidine with a six-member chelate ring. Synthesis, characterization, and initial DNA-binding and antitumor studies,” Journal of Inorganic Biochemistry, vol. 46, no. 4, pp. 267–279, 1992.
[170]  C. Navarro-Ranninger, J. M. Perez, F. Zamora, V. M. Gonzalez, J. R. Masaguer, and C. Alonso, “Palladium(II) compounds of putrescine and spermine. Synthesis, characterization, and DNA-binding and antitumor properties,” Journal of Inorganic Biochemistry, vol. 52, no. 1, pp. 37–49, 1993.
[171]  C. Navarro-Ranninger, P. Amo Ochoa, J. R. Masaguer, J. M. Pérez, V. M. González, and C. Alonso, “Platinum (II) and (IV) spermidine complexes. Synthesis, characterization, and biological studies,” Journal of Inorganic Biochemistry, vol. 53, no. 3, pp. 177–190, 1994.
[172]  M. Navarro, N. P. Pe?a, I. Colmenares, T. González, M. Arsenak, and P. Taylor, “Synthesis and characterization of new palladium-clotrimazole and palladium-chloroquine complexes showing cytotoxicity for tumor cell lines in vitro,” Journal of Inorganic Biochemistry, vol. 100, no. 1, pp. 152–157, 2006.
[173]  A. Hegmans, J. Kasparkova, O. Vrana, L. R. Kelland, V. Brabec, and N. P. Farrell, “Amide-based prodrugs of spermidine-bridged dinuclear platinum. Synthesis, DNA binding, and biological activity,” Journal of Medicinal Chemistry, vol. 51, no. 7, pp. 2254–2260, 2008.
[174]  S. M. Fiuza, A. M. Amado, H. F. dos Santos, M. P. M. Marques, and L. A. E. Batista de Carvalho, “Conformational and vibrational study of cis-diamminedichloropalladium(ii),” Physical Chemistry Chemical Physics, vol. 12, no. 42, pp. 14309–14321, 2010.
[175]  R. Tummala, P. Diegelman, S. M. Fiuza et al., “Characterization of Pt-, Pd-spermine complexes for their effect on polyamine pathway and cisplatin resistance in A2780 ovarian carcinoma cells,” Oncology Reports, vol. 24, no. 1, pp. 15–24, 2010.
[176]  R. Tummala, P. Diegelman, S. Hector et al., “Combination effects of platinum drugs and N1, N11 diethylnorspermine on spermidine/spermine N1-acetyltransferase, polyamines and growth inhibition in A2780 human ovarian carcinoma cells and their oxaliplatin and cisplatin-resistant variants,” Cancer Chemotherapy and Pharmacology, vol. 67, no. 2, pp. 401–414, 2011.
[177]  A. Tassoni, N. Bagni, M. Ferri et al., “Helianthus tuberosus and polyamine research: past and recent applications of a classical growth model,” Plant Physiology and Biochemistry, vol. 48, no. 7, pp. 496–505, 2010.
[178]  O. Corduneanu, A. M. Chiorcea-Paquim, S. M. Fiuza, M. P. M. Marques, and A. M. Oliveira-Brett, “Polynuclear palladium complexes with biogenic polyamines: AFM and voltammetric characterization,” Bioelectrochemistry, vol. 78, no. 2, pp. 97–105, 2010.
[179]  O. Corduneanu, A. M. Chiorcea-Paquim, V. Diculescu, S. M. Fiuza, M. P. M. Marques, and A. M. Oliveira-Brett, “DNA interaction with palladium chelates of biogenic polyamines using atomic force microscopy and voltammetric characterization,” Analytical Chemistry, vol. 82, no. 4, pp. 1245–1252, 2010.
[180]  S. M. Fiuza, J. Holy, L. A. E. Batista de Carvalho, and M. P. M. Marques, “Biologic activity of a dinuclear Pd(II)-spermine complex toward human breast cancer,” Chemical Biology and Drug Design, vol. 77, no. 6, pp. 477–488, 2011.
[181]  A. L. M. Batista de Carvalho, S. M. Fiuza, J. Tomkinson, L. A. E. Batista de Carvalho, and M. P. M. Marques, “Pt(II) complexes with linear diamines-part i: vibrational study of Pt-diaminopropane,” International Journal of Spectroscopy, vol. 27, no. 5-6, pp. 403–413, 2012.
[182]  E. Escribano, M. Font-Bardia, T. Calvet, J. Lorenzo, P. Gamez, and V. Moreno, “DNA binding studies of a series of cis-[Pt(Am)2X2] complexes (Am?=?inert amine, X?=?labile carboxylato ligand),” Inorganica Chimica Acta, vol. 394, pp. 65–76, 2013.
[183]  U. Bierbach, T. W. Hambley, and N. Farrell, “Modification of platinum(II) antitumor complexes with sulfur ligands. 1. Synthesis, structure, and spectroscopic properties of cationic complexes of the types [PtCl(diamine) (L)]NO3 and [{PtCl(diamine)}2(L-L)](NO3)2 (L = monofunctional thiourea derivative; L-L = bifunctional thiourea derivative),” Inorganic Chemistry, vol. 37, no. 4, pp. 708–716, 1998.
[184]  L. Gatti, P. Perego, R. Leone et al., “Novel bis-platinum complexes endowed with an improved pharmacological profile,” Molecular Pharmaceutics, vol. 7, no. 1, pp. 207–216, 2010.
[185]  P. Perego, C. Caserini, L. Gatti et al., “A novel trinuclear platinum complex overcomes cisplatin resistance an osteosarcoma cell system,” Molecular Pharmacology, vol. 55, no. 3, pp. 528–534, 1999.
[186]  S. Komeda, T. Moulaei, K. K. Woods, M. Chikuma, N. P. Farrell, and L. D. Williams, “A third mode of DNA binding: phosphate clamps by a polynuclear platinum complex,” Journal of the American Chemical Society, vol. 128, no. 50, pp. 16092–16103, 2006.
[187]  Y. Qu, A. Harris, A. Hegmans et al., “Synthesis and DNA conformational changes of non-covalent polynuclear platinum complexes,” Journal of Inorganic Biochemistry, vol. 98, no. 10, pp. 1591–1598, 2004.
[188]  A. Harris, Y. Qu, and N. Farrell, “Unique cooperative binding interaction observed between a minor groove binding Pt antitumor agent and hoeschst dye 33258,” Inorganic Chemistry, vol. 44, no. 5, pp. 1196–1198, 2005.
[189]  A. L. Harris, X. Yang, A. Hegmans et al., “Synthesis, characterization, and cytotoxicity of a novel highly charged trinuclear platinum compound. Enhancement of cellular uptake with charge,” Inorganic Chemistry, vol. 44, no. 26, pp. 9598–9600, 2005.
[190]  G. Pratesi, P. Perego, D. Polizzi et al., “A novel charged trinuclear platinum complex effective against cisplatin-resistant tumours: hypersensitivity of p53-mutant human tumour xenografts,” British Journal of Cancer, vol. 80, no. 12, pp. 1912–1919, 1999.
[191]  T. D. McGregor, A. Hegmans, J. Kasparkova et al., “A comparison of DNA binding profiles of dinuclear platinum compounds with polyamine linkers and the trinuclear platinum phase II clinical agent BBR3464,” Journal of Biological Inorganic Chemistry, vol. 7, no. 4-5, pp. 397–404, 2002.
[192]  Y. Qu and N. Farrell, “Effect of diamine linker on the chemistry of bis(platinum) complexes. A comparison of the aqueous solution behavior of 1,4-butanediamine and 2,5-dimethyl-2,5-hexanediamine complexes,” Journal of Inorganic Biochemistry, vol. 40, no. 3, pp. 255–264, 1990.
[193]  N. Farrell, Y. Qu, J. Kasparkova et al., “Chemical studies and DNA binding of charged polynuclear platinum complexes,” Proceedings of the American Association for Cancer Research, vol. 38, pp. 310–315, 1997.
[194]  Y. Qu, H. Rauter, A. P. S. Fontes, R. Bandarage, L. R. Kelland, and N. Farrell, “Synthesis, characterization, and cytotoxicity of trifunctional dinuclear platinum complexes: comparison of effects of geometry and polyfunctionality on biological activity,” Journal of Medicinal Chemistry, vol. 43, no. 16, pp. 3189–3192, 2000.
[195]  U. Bierbach and N. Farrell, “Modulation of nucleotide binding of trans platinum(II) complexes by planar ligands. A combined proton NMR and molecular mechanics study,” Inorganic Chemistry, vol. 36, no. 17, pp. 3657–3665, 1997.
[196]  N. Farrell, “DNA-binding and chemistry of dinuclear platinum complexes,” Comments on Inorganic Chemistry, vol. 16, no. 6, pp. 373–389, 1995.
[197]  N. Farrell, “Current status of structure-activity relationships of platinum anticancer drugs: activation of the trans geometry,” Metal Ions in Biological Systems, vol. 32, pp. 603–639, 1996.
[198]  C. Hofr, N. Farrell, and V. Brabec, “Thermodynamic properties of duplex DNA containing a site-specific d(GpG) intrastrand crosslink formed by an antitumor dinuclear platinum complex,” Nucleic Acids Research, vol. 29, no. 10, pp. 2034–2040, 2001.
[199]  J. Zehnulova, J. Kasparkova, N. Farrell, and V. Brabec, “Conformation, recognition by high mobility group domain proteins, and nucleotide excision repair of DNA intrastrand cross-links of novel antitumor trinuclear platinum complex BBR3464,” The Journal of Biological Chemistry, vol. 276, no. 25, pp. 22191–22199, 2001.
[200]  A. Hegmans, Y. Qu, L. R. Kelland, J. D. Roberts, and N. Farrell, “Novel approaches to polynuclear platinum pro-drugs. Selective release of cytotoxic platinum-spermidine species through hydrolytic cleavage of carbamates,” Inorganic Chemistry, vol. 40, no. 24, pp. 6108–6114, 2001.
[201]  J. Kasparkova, J. Zehnulova, N. Farrell, and V. Brabec, “DNA interstrand cross-links of the novel antitumor trinuclear platinum complex BBR3464. Conformation, recognition by high mobility group domain proteins, and nucleotide excision repair,” The Journal of Biological Chemistry, vol. 277, no. 50, pp. 48076–48086, 2002.
[202]  J. Kasparkova, M. Fojta, N. Farrell, and V. Brabec, “Differential recognition by the tumor suppressor protein p53 of DNA modified by the novel antitumor trinuclear platinum drug BBR3464 and cisplatin,” Nucleic Acids Research, vol. 32, no. 18, pp. 5546–5552, 2004.
[203]  C. Billecke, S. Finniss, L. Tahash et al., “Polynuclear platinum anticancer drugs are more potent than cisplatin and induce cell cycle arrest in glioma,” Neuro-Oncology, vol. 8, no. 3, pp. 215–226, 2006.
[204]  J. Zhang, L. Wang, Z. Xing et al., “Status of Bi- and multi-nuclear platinum anticancer drug development,” Anti-Cancer Agents in Medicinal Chemistry, vol. 10, no. 4, pp. 272–282, 2010.
[205]  T. Muchova, S. M. Quintal, N. P. Farrell, V. Brabec, and J. Kasparkova, “Antitumor bifunctional dinuclear Pt(II) complex BBR 3535 forms interduplex DNA cross-links under molecular crowding conditions,” Journal of Biological Inorganic Chemistry, vol. 17, no. 2, pp. 239–245, 2012.
[206]  P. Perego, L. Gatti, C. Caserini et al., “The cellular basis of the efficacy of the trinuclear platinum complex BBR 3464 against cisplatin-resistant cells,” Journal of Inorganic Biochemistry, vol. 77, no. 1-2, pp. 59–64, 1999.
[207]  M. B. G. Kloster, J. C. Hannis, D. C. Muddiman, and N. Farrell, “Consequences of nucleic acid conformation on the binding of a trinuclear platinum drug,” Biochemistry, vol. 38, no. 45, pp. 14731–14737, 1999.
[208]  J. Kasparkova, O. Vrana, N. Farrell, and V. Brabec, “Effect of the geometry of the central coordination sphere in antitumor trinuclear platinum complexes on DNA binding,” Journal of Inorganic Biochemistry, vol. 98, no. 10, pp. 1560–1569, 2004.
[209]  P. Kabolizadeh, J. Ryan, and N. Farrell, “Differences in the cellular response and signaling pathways of cisplatin and BBR3464 ([{trans-PtCl(NH3)2}2 -(trans-Pt(NH3)2(H2N(CH2)6-NH2)2)]4+) influenced by copper homeostasis,” Biochemical Pharmacology, vol. 73, no. 9, pp. 1270–1279, 2007.
[210]  Y. Qu, M. C. Tran, and N. P. Farrell, “Structural consequences of a DNA interstrand cross-link by a trinuclear platinum complex: unique formation of two such cross-links in a 10-mer duplex,” Journal of Biological Inorganic Chemistry, vol. 14, no. 6, pp. 969–977, 2009.
[211]  J. Malina, N. P. Farrell, and V. Brabec, “DNA interstrand cross-links of an antitumor trinuclear platinum(II) complex: thermodynamic analysis and chemical probing,” Chemistry, vol. 6, no. 6, pp. 1566–1574, 2011.
[212]  J. Kjellstrom, S. M. Oredsson, and J. Wennerberg, “Increased toxicity of a trinuclear Pt-compound in a human squamous carcinoma cell line by polyamine depletion,” Cancer Cell International, vol. 12, no. 20, pp. 1–9, 2012.
[213]  D. I. Jodrell, T. R. J. Evans, W. Steward et al., “Phase II studies of BBR3464, a novel tri-nuclear platinum complex, in patients with gastric or gastro-oesophageal adenocarcinoma,” European Journal of Cancer, vol. 40, no. 12, pp. 1872–1877, 2004.
[214]  E. I. Montero, B. T. Benedetti, J. B. Mangrum, M. J. Oehlsen, Y. Qu, and N. P. Farrell, “Pre-association of polynuclear platinum anticancer agents on a protein, human serum albumin. Implications for drug design,” Dalton Transactions, no. 43, pp. 4938–4942, 2007.
[215]  B. T. Benedetti, E. J. Peterson, P. Kabolizadeh, A. Martínez, R. Kipping, and N. P. Farrell, “Effects of noncovalent platinum drug-protein interactions on drug efficacy: use of fluorescent conjugates as probes for drug metabolism,” Molecular Pharmaceutics, vol. 8, no. 3, pp. 940–948, 2011.
[216]  H. Silva, F. Frezard, E. J. Peterson, P. Kabolizadeh, J. J. Ryan, and N. P. Farrell, “Heparan sulfate proteoglycan-mediated entry pathway for charged tri-platinum compounds: differential cellular accumulation mechanisms for platinum,” Molecular Pharmaceutics, vol. 9, no. 6, pp. 1795–1802, 2012.
[217]  H. Cheng, F. Huq, P. Beale, and K. Fisher, “Synthesis and activity of a trinuclear platinum complex: [{trans-PtCl(NH3)2}2mu-{trans-Pt(3-hydroxypyridine)2(H2N(CH2)6NH2)2}]Cl4 in ovarian cancer cell lines,” European Journal of Medicinal Chemistry, vol. 40, no. 8, pp. 772–781, 2005.
[218]  A. L. Harris, J. J. Ryan, and N. Farrell, “Biological consequences of trinuclear platinum complexes: comparison of [{trans-PtCl(NH3)2}2 -(trans-Pt(NH3)2(H2N(CH2)6-NH2)2)]4+ (BBR 3464) with its noncovalent congeners,” Molecular Pharmacology, vol. 69, no. 2, pp. 666–672, 2006.
[219]  H. Tayyem, F. Huq, J. Q. Yu, P. Beale, and K. Fisher, “Synthesis and activity of a trinuclear platinum complex: [{trans-PtCl(NH3)2}2 -{trans-Pt(3-hydroxypyridine)2(H2N(CH2)6NH2)2}]Cl4 in ovarian cancer cell lines,” ChemMedChem, vol. 3, no. 1, pp. 145–151, 2008.
[220]  J. Malina, J. Kasparkova, N. P. Farrell, and V. Brabec, “Walking of antitumor bifunctional trinuclear PtII complex on double-helical DNA,” Nucleic Acids Research, vol. 39, no. 2, pp. 720–728, 2011.
[221]  G. Pratesi, L. Dal Bo, A. Paolicchi, P. Tonarelli, R. Tongiani, and F. Zunino, “The role of the glutathione-dependent system in tumor sensitivity to cisplatin: a study of human tumor xenografts,” Annals of Oncology, vol. 6, no. 3, pp. 283–289, 1995.
[222]  H. H. W. Chen and M. T. Kuo, “Role of glutathione in the regulation of cisplatin resistance in cancer chemotherapy,” Metal-Based Drugs, vol. 2010, Article ID 430939, 2010.
[223]  S. M. Quintal, Q. A. Depaula, and N. P. Farrell, “Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences,” Metallomics, vol. 3, no. 2, pp. 121–139, 2011.
[224]  Q. A. Depaula, S. D. Tsotsoros, Y. Qu, C. A. Bayse, and N. P. Farrell, “Platinum-nucleobase Ptn4 complexes as chemotypes for selective pePtide reactions with biomolecules,” Inorganica Chimica Acta, vol. 393, pp. 222–229, 2012.
[225]  G. B. Deacon, Platinum and Other Metal Coordination Compound in Cancer Cemotherapy, Plenum, New York, NY, USA, 1991.
[226]  Q. Zhang, W. Zhong, B. Xing, W. Tang, and Y. Chen, “Binding properties and stoichiometries of a palladium(II) complex to metallothioneins in vivo and in vitro,” Journal of Inorganic Biochemistry, vol. 72, no. 3-4, pp. 195–200, 1998.
[227]  P. A. Andrews, M. P. Murphy, and S. B. Howell, “Differential potentiation of alkylating and platinating agent cytotoxicity in human ovarian carcinoma cells by glutathione depletion,” Cancer Research, vol. 45, no. 12, part 1, pp. 6250–6253, 1985.
[228]  J. K. Lau and D. V. Deubel, “Loss of amine from platinum(II) complexes: implications for cisplatin inactivation, storage, and resistance,” Chemistry, vol. 11, no. 9, pp. 2849–2855, 2005.
[229]  X. Wang and Z. Guo, “The role of sulfur in platinum anticancer chemotherapy,” Anti-Cancer Agents in Medicinal Chemistry, vol. 7, no. 1, pp. 19–34, 2007.
[230]  J. Reedijk, “Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell?” Chemical Reviews, vol. 99, no. 9, pp. 2499–2510, 1999.
[231]  L. Giovagnini, L. Ronconi, D. Aldinucci, D. Lorenzon, S. Sitran, and D. Fregona, “Synthesis, characterization, and comparative in vitro cytotoxicity studies of platinum(II), palladium(II), and gold(III) methylsarcosinedithiocarbamate complexes,” Journal of Medicinal Chemistry, vol. 48, no. 5, pp. 1588–1595, 2005.
[232]  S. van Zutphen, M. Kraus, C. Driessen, G. A. van der Marel, H. S. Overkleeft, and J. Reedijk, “Probing the potential of platinum(II) complexes for the inhibition of thiol-dependent enzymatic activity,” Journal of Inorganic Biochemistry, vol. 99, no. 6, pp. 1384–1389, 2005.
[233]  P. Umapathy, “The chemical and biochemical consequences of the binding of the antitumour drug cisplatin and other platinum group metal complexes to DNA,” Coordination Chemistry Reviews, vol. 95, no. 2, pp. 129–181, 1989.
[234]  T. A. K. Al-Allaf and L. J. Rashan, “Cis- and trans- platinum and palladium complexes: a comparative study review as antitumour agents,” Bollettino Chimico Farmaceutico, vol. 140, no. 3, pp. 205–210, 2001.
[235]  F. Huq, H. Tayyem, A. Abdullah, P. Beale, and K. Fisher, “Synthesis and characterization and binding of amine-palladium(II) complexes and their interaction with DNA,” Asian Journal of Chemistry, vol. 18, no. 1, pp. 65–78, 2006.
[236]  S. Ray, R. Mohan, J. K. Singh et al., “Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes,” Journal of the American Chemical Society, vol. 129, no. 48, pp. 15042–15053, 2007.
[237]  A. Garoufis, S. K. Hadjikakou, and N. Hadjiliadis, “Palladium coordination compounds as anti-viral, anti-fungal, anti-microbial and anti-tumor agents,” Coordination Chemistry Reviews, vol. 253, no. 9-10, pp. 1384–1397, 2009.
[238]  E. Gao, C. Liu, M. Zhu, H. Lin, Q. Wu, and L. Liu, “Current development of pd(II) complexes as potential antitumor agents,” Anti-Cancer Agents in Medicinal Chemistry, vol. 9, no. 3, pp. 356–368, 2009.
[239]  A. Chevry, M. L. Teyssot, A. Maisonial et al., “Click chelators—the behavior of platinum and palladium complexes in the presence of guanosine and DNA,” European Journal of Inorganic Chemistry, no. 22, pp. 3513–3519, 2010.
[240]  J. L. Butour, S. Wimmer, F. Wimmer, and P. Castan, “Palladium(II) compounds with potential antitumour properties and their platinum analogues: a comparative study of the reaction of some erotic acid derivatives with DNA in vitro,” Chemico-Biological Interactions, vol. 104, no. 2-3, pp. 165–178, 1997.
[241]  P. Banerjee, “Interaction of nitrogen bases with some platinum(ii) and palladium(ii) complexes-usual and unusual features,” Coordination Chemistry Reviews, vol. 190–192, pp. 19–28, 1999.
[242]  H. Mansuri-Torshizi, S. Ghadimy, and N. Akbarzadeh, “Synthesis, characterization, DNA binding and cytotoxic studies of platinum(II) and palladium(II) complexes of the -bipyridine and an anion of 1,1-cyclobutanedicarboxylic acid,” Chemical and Pharmaceutical Bulletin, vol. 49, no. 12, pp. 1517–1520, 2001.
[243]  E. Budzisz, U. Krajewska, and M. Rózalski, “Cytotoxic and proapoptotic effects of new Pd(II) and Pt(II)-complexes with 2-ethanimidoyl-2-methoxy-2H-1,2-benzoxaphosphinin-4-ol-2-oxide,” Polish Journal of Pharmacology, vol. 56, no. 4, pp. 473–478, 2004.
[244]  F. L. Wimmer, S. Wimmer, P. Castan, S. Cros, N. Johnson, and E. Colacio-Rodrigez, “The antitumor activity of some palladium(II) complexes with chelating ligands,” Anticancer Research, vol. 9, no. 3, pp. 791–793, 1989.
[245]  M. R. Shehata, “Mixed ligand complexes of diaquo ( -bipyridine)palladium(II) with cyclobutane-1,1-dicarboxylic acid and DNA constituents,” Transition Metal Chemistry, vol. 26, no. 1-2, pp. 198–204, 2001.
[246]  J. Kuduk-Jaworska, A. Puszko, M. Kubiak, and M. Pelczyńska, “Synthesis, structural, physico-chemical and biological properties of new palladium(II) complexes with 2,6-dimethyl-4-nitropyridine,” Journal of Inorganic Biochemistry, vol. 98, no. 8, pp. 1447–1456, 2004.
[247]  A. C. F. Caires, “Recent advances involving palladium (II) complexes for the cancer therapy,” Anti-Cancer Agents in Medicinal Chemistry, vol. 7, no. 5, pp. 484–491, 2007.
[248]  J. Zhang, F. Zhang, H. Li et al., “Recent progress and future potential for metal complexes as anticancer drugs targeting g-quadruplex DNA,” Current Medicinal Chemistry, vol. 19, no. 18, pp. 2957–2975, 2012.
[249]  R. T. Dorr, “A review of the modulation of cisplatin toxicities by chemoprotectants, platinum and other metal coordination compounds in cancer chemotherapy,” in PlatInum and Other Metal CoordInation Compounds in Cancer Chemotherapy, vol. 2, pp. 131–154, Plenum Press, New York, NY, USA, 1996.
[250]  J. Bünger, J. Stork, and K. Stalder, “Cyto- and genotoxic effects of coordination complexes of platinum, palladium and rhodium in vitro,” International Archives of Occupational and Environmental Health, vol. 69, no. 1, pp. 33–38, 1996.
[251]  M. Zeizinger, J. V. Burda, J. ?poner, V. Kapsa, and J. Leszczynski, “A systematic ab initio study of the hydration of selected palladium square-planar complexes. A comparison with platinum analogues,” The Journal of Physical Chemistry A, vol. 105, no. 34, pp. 8086–8092, 2001.
[252]  C. Bazzicalupi, A. Bencini, A. Bianchi, C. Giorgi, and B. Valtancoli, “Pd(II) complexes of aliphatic polyamine ligands in aqueous solution: thermodynamic and structural features,” Coordination Chemistry Reviews, vol. 184, no. 1, pp. 243–270, 1999.
[253]  F. Huq, H. Daghriri, J. Q. Yu, H. Tayyem, P. Beale, and M. Zhang, “Synthesis, characterisation, activities, cell uptake and DNA binding of [{trans-PtCl(NH3)2} { -(H2N(CH2)6NH2)} {trans-PdCl(NH3)2](NO3)Cl,” European Journal of Medicinal Chemistry, vol. 39, no. 11, pp. 947–958, 2004.
[254]  H. Daghriri, F. Huq, and P. Beale, “Studies on activities, cell up take and DNA binding of four multinuclear complexes of the form: [{trans-PtCl(NH3)2}2 -{trans-Pd(NH3)2-(H2N(CH2)nNH2)2}]Cl4 where ,” Journal of Inorganic Biochemistry, vol. 98, no. 11, pp. 1722–1733, 2004.
[255]  H. Cheng, F. Huq, P. Beale, and K. Fisher, “Synthesis, characterisation, activities, cell uptake and DNA binding of a trinuclear complex: [{trans-PtCl(NH3)}2 -{trans-Pd(NH3)(2-hydroxypyridine)-(H2N(CH2)6NH2)2]Cl4,” European Journal of Medicinal Chemistry, vol. 41, no. 7, pp. 896–903, 2006.
[256]  T. Rau, R. Alsfasser, A. Zahl, and R. van Eldik, “Structural and kinetic studies on the formation of platinum(II) and palladium(II) complexes with L-cysteine-derived ligands,” Inorganic Chemistry, vol. 37, no. 17, pp. 4223–4230, 1998.
[257]  E. Holló-Sitkei, G. Tárkányi, L. Párkányi, T. Megyes, and G. Besenyei, “Steric effects in the self-assembly of palladium complexes with chelating diamine ligands,” European Journal of Inorganic Chemistry, no. 10, pp. 1573–1583, 2008.
[258]  G. Codina, A. Caubet, C. López, V. Moreno, and E. Molins, “Palladium(ii) and platinum(ii) polyamine complexes: X-ray crystal structures of (sp-4-2)-chloro{N-[(3-amino- )propyl]propane-1, 3-diamine- }palladium(1+) tetrachloropalladate (2-) (2?:?1) and (r, s)-tetrachloro[ -(spermine)]dipalladium(ii) (={ -{ -bis[(3-amino- )propyl]butane-1, 4-diamine- }}tetrachlorodipalladium),” Helvetica Chimica Acta, vol. 82, pp. 1025–1037, 1999.
[259]  P. Amo-Ochoa, V. M. González, J. M. Pérez, J. R. Masaguer, C. Alonso, and C. Navarro-Ranninger, “Cytotoxicity, DNA binding, and reactivity against nucleosides of platinum (II) and (IV) spermine compounds,” Journal of Inorganic Biochemistry, vol. 64, no. 4, pp. 287–299, 1996.
[260]  A. M. Amado, S. M. Fiuza, M. P. M. Marques, and L. A. E. Batista de Carvalho, “Conformational and vibrational study of platinum(II) anticancer drugs: cis-diamminedichloroplatinum (II) as a case study,” Journal of Chemical Physics, vol. 127, no. 18, Article ID 185104, 2007.
[261]  S. M. Fiuza, A. M. Amado, M. P. M. Marques, and L. A. E. Batista de Carvalho, “Use of effective core potential calculations for the conformational and vibrational study of platinum(II) anticancer drugs-cis- diamminedichloroplatinum(II) as a case study,” The Journal of Physical Chemistry A, vol. 112, no. 14, pp. 3253–3259, 2008.
[262]  R. D. Graham and D. R. Williams, “The synthesis and screening for anti-bacterial, -cancer, -fungicidal and -viral activities of some complexes of palladium and nickel,” Journal of Inorganic and Nuclear Chemistry, vol. 41, no. 8, pp. 1245–1249, 1979.
[263]  N. Farrell, Transition Metal Complexes as Drugs and Chemotherapeutic Agents, Kluwer Academic Publishers, London, UK, 1989.
[264]  A. G. Quiroga, J. M. Pérez, I. López-Solera et al., “Novel tetranuclear orthometalated complexes of Pd(II) and Pt(II) derived from p-isopropylbenzaldehyde thiosemicarbazone with cytotoxic activity in cis-DDP resistant tumor cell lines. Interaction of these complexes with DNA,” Journal of Medicinal Chemistry, vol. 41, no. 9, pp. 1399–1408, 1998.
[265]  A. G. Quiroga, J. M. Pérez, E. I. Montero, D. X. West, C. Alonso, and C. Navarro-Ranninger, “Synthesis and characterization of Pd(II) and Pt(II) complexes of p-isopropylbenzaldehyde N-protected thiosemicarbazones. Cytotoxic activity against ras-transformed cells,” Journal of Inorganic Biochemistry, vol. 75, no. 4, pp. 293–301, 1999.
[266]  D. Kovala-Demertzi, A. Domopoulou, M. A. Demertzis, G. Valle, and A. Papageorgiou, “Palladium(II) complexes of 2-acetylpyridine N(4)-methyl, N(4)-ethyl and N(4)-phenyl-thiosemicarbazones. Crystal structure of chloro(2-acetylpyridine N(4)-methylthiosemicarbazonato) palladium(II). Synthesis, spectral studies, in vitro and in vivo antitumour activity,” Journal of Inorganic Biochemistry, vol. 68, no. 2, pp. 147–155, 1997.
[267]  M. A. Ali, A. H. Mirza, R. J. Butcher, and K. A. Crouse, “The preparation, characterization and biological activity of palladium(II) and platinum(II) complexes of tridentate NNS ligands derived from S-methyl- and S-benzyldithiocarbazates and the X-ray crystal structure of the [Pd(mpasme)Cl] complex,” Transition Metal Chemistry, vol. 31, no. 1, pp. 79–87, 2006.
[268]  M. J. Cleare and P. C. Hydes, “Metal complexes as anticancer agents,” in Metal Ions in Biological Systems, pp. 1–62, Marcel Dekker, New York, NY, USA, 1980.
[269]  J. D. Higgins, L. Neely, and S. Fricker, “Synthesis and cytotoxicity of some cyclometallated palladium complexes,” Journal of Inorganic Biochemistry, vol. 49, no. 2, pp. 149–156, 1993.
[270]  D. Kovala-Demertzi, M. A. Demertzis, J. R. Miller, C. S. Frampton, J. P. Jasinski, and D. X. West, “Structure of bis(2-acetylpyridine 3-hexamethyleneiminylthiosemicarbazonato) palladium(II), a potential antitumor complex,” Journal of Inorganic Biochemistry, vol. 92, no. 2, pp. 137–140, 2002.
[271]  L. Tu?ek-Bo?i?, I. Matija?i?, G. Bocelli et al., “Preparation, characterization and activity of palladium(II) halide complexes with diethyl 2-quinolylmethylphosphonate (2-dqmp). X-ray crystal structures of trans-[Pd(2-dqmp)2X2] (X?=?Cl or Br),” Journal of the Chemical Society, Dalton Transactions, no. 2, pp. 195–201, 1991.
[272]  C. Mock, I. Puscasu, M. J. Rauterkus, G. Tallen, J. E. A. Wolff, and B. Krebs, “Novel Pt(II) anticancer agents and their Pd(II) analogues: syntheses, crystal structures, reactions with nucleobases and cytotoxicities,” Inorganica Chimica Acta, vol. 319, no. 1-2, pp. 109–116, 2001.
[273]  G. B. Onoa, V. Moreno, M. Font-Bardia, X. Solans, J. M. Pérez, and C. Alonso, “Structural and cytotoxic study of new Pt(II) and Pd(II) complexes with the bi-heterocyclic ligand mepirizole,” Journal of Inorganic Biochemistry, vol. 75, no. 3, pp. 205–212, 1999.
[274]  N. Dodoff, S. Varbanov, G. Borisov, and N. Spassovska, “Platinum (II), platinum (IV), and palladium (II) complexes of amino substituted phosphine oxides: synthesis, characterization, and antitumor activity,” Journal of Inorganic Biochemistry, vol. 39, no. 3, pp. 201–208, 1990.
[275]  M. Z. Wi?niewski and T. Gtowiak, “The structure and properties of a palladium(II) complex of 2-mercapto-1-methylimidazole,” Polish Journal of Chemistry, vol. 72, no. 3, pp. 514–518, 1998.
[276]  M. Z. Wi?niewski, J. Wietrzyk, and A. Opolski, “Novel Ru(III), Rh(III), Pd(II) and Pt(II) complexes with ligands incorporating azole and pyrimidine rings. I. Antiproliferative activity in vitro,” Archivum Immunologiae et Therapiae Experimentalis, vol. 48, no. 1, pp. 51–55, 2000.
[277]  D. Kovala-Demertzi, M. A. Demertzis, E. Filiou et al., “Platinum(II) and palladium(II) complexes with 2-acetyl pyridine 4N-ethyl thiosemicarbazone able to overcome the cis-platin resistance. Structure, antibacterial activity and DNA strand breakage,” BioMetals, vol. 16, no. 3, pp. 411–418, 2003.
[278]  A. G. Quiroga and C. N. Ranninger, “Contribution to the SAR field of metallated and coordination complexes: studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs,” Coordination Chemistry Reviews, vol. 248, no. 1-2, pp. 119–133, 2004.
[279]  K. Akdi, R. A. Vilaplana, S. Kamah, J. A. R. Navarro, J. M. Salas, and F. González-Vílchez, “Study of the biological effects and DNA damage exerted by a new dipalladium-Hmtpo complex on human cancer cells,” Journal of Inorganic Biochemistry, vol. 90, no. 1-2, pp. 51–60, 2002.
[280]  J. Dupont, C. S. Consorti, and J. Spencer, “The potential of palladacycles: more than just precatalysts,” Chemical Reviews, vol. 105, no. 6, pp. 2527–2571, 2005.
[281]  H. Mansuri-Torshizi, R. Mital, T. S. Srivastava, H. Parekh, and M. P. Chitnis, “Synthesis, characterization, and cytotoxic studies of -diimine/1,2- diamine platinum(II) and palladium(II) complexes of selenite and tellurite and binding of some of these complexes to DNA,” Journal of Inorganic Biochemistry, vol. 44, no. 4, pp. 239–247, 1991.
[282]  A. S. Abu-Surrah, M. Kettunen, K. Lappalainen, U. Piironen, M. Klinga, and M. Leskel?, “Synthesis of new chiral diimine palladium(II) and nickel(II) complexes bearing oxazoline- and myrtanyl-based nitrogen ligands. Crystal structure of the C2-symmetric complex [{(1R,2S)-inda-box}PdCl2],” Polyhedron, vol. 21, no. 1, pp. 27–31, 2002.
[283]  B. T. Khan, J. Bhatt, K. Najmuddin, S. Shamsuddin, and K. Annapoorna, “Synthesis, antimicrobial, and antitumor activity of a series of palladium(II) mixed ligand complexes,” Journal of Inorganic Biochemistry, vol. 44, no. 1, pp. 55–63, 1991.
[284]  H. Mansuri-Torshizi, T. S. Srivastava, H. K. Parekh, and M. P. Chitnis, “Synthesis, spectroscopic, cytotoxic, and DNA binding studies of binuclear -bipyridine-platinum(II) and -palladium(II) complexes of meso- -diaminoadipic and meso- -diaminosuberic acids,” Journal of Inorganic Biochemistry, vol. 45, no. 2, pp. 135–148, 1992.
[285]  H. Hohmann and R. van Eldik, “Rate and equilibrium data for substitution reactions of diaqua(ethylenediamine)palladium(II) with chloride in aqueous solution,” Inorganica Chimica Acta, vol. 174, no. 1, pp. 87–92, 1990.
[286]  H. Hohmann, S. Suvachittanont, and R. van Eldik, “A kinetic study of the substitution behaviour of aqua and chloro complexes of ethylenediaminepalladium(II) in aqueous solution,” Inorganica Chimica Acta, vol. 177, no. 1, pp. 51–58, 1990.
[287]  F. Huq, H. Tayyem, P. Beale, and J. Q. Yu, “Studies on the activity of three palladium(II) compounds of the form: trans-PdL2Cl2 where L?=?2-hydroxypyridine, 3-hydroxypyridine, and 4-hydroxypyridine,” Journal of Inorganic Biochemistry, vol. 101, no. 1, pp. 30–35, 2007.
[288]  A. S. Abu-Surrah, T. A. K. Al-Allaf, M. Klinga, and M. Ahlgrend, “Chiral palladium(II) and platinum(II) complexes of diaminocyclohexane: X-ray structures of (1R,2R)-(-)-1,2-diaminocyclohexane dihydrochloride and its corresponding oxalato platinum(II) complex,” Polyhedron, vol. 22, no. 12, pp. 1529–1534, 2003.
[289]  G. Zhao, H. Lin, P. Yu, H. Sun, S. Zhu, and Y. Chen, “Comparison of the mode of action of a dinuclear platinum complex containing a pyridine derivative with its monomeric analog,” Chemico-Biological Interactions, vol. 116, no. 1-2, pp. 19–29, 1998.
[290]  I. F. Duarte, I. Lamego, J. Marques, M. P. M. Marques, B. J. Blaise, and A. M. Gil, “Nuclear magnetic resonance (NMR) study of the effect of cisplatin on the metabolic profile of MG-63 osteosarcoma cells,” Journal of Proteome Research, vol. 9, no. 11, pp. 5877–5886, 2010.
[291]  M. J. Cleare and J. D. Hoeschele, “Studies on the antitumor activity of group VIII transition metal complexes. I. Platinum (II) complexes,” Bioinorganic Chemistry, vol. 2, no. 3, pp. 187–210, 1973.
[292]  T. W. Hambley, “The influence of structure on the activity and toxicity of Pt anti-cancer drugs,” Coordination Chemistry Reviews, vol. 166, pp. 181–223, 1997.
[293]  J. Zhang, D. Liu, Y. Li, J. Sun, L. Wang, and A. Zang, “Status of non-classical mononuclear platinum anticancer drug development,” Mini-Reviews in Medicinal Chemistry, vol. 9, no. 11, pp. 1357–1366, 2009.
[294]  N. Farrell, L. R. Kelland, J. D. Roberts, and M. van Beusichem, “Activation of the trans geometry in platinum antitumor complexes: a survey of the cytotoxicity of trans complexes containing planar ligands in murine L1210 and human tumor panels and studies on their mechanism of action,” Cancer Research, vol. 52, no. 18, pp. 5065–5072, 1992.
[295]  S. Radulovic, Z. Tesic, and S. Manic, “Trans-platinum complexes as anticancer drugs: recent developments and future prospects,” Current Medicinal Chemistry, vol. 9, no. 17, pp. 1611–1618, 2002.
[296]  M. Coluccia and G. Natile, “Trans-platinum complexes in cancer therapy,” Anti-Cancer Agents in Medicinal Chemistry, vol. 7, no. 1, pp. 111–123, 2007.
[297]  S. M. Aris and N. P. Farrell, “Towards antitumor active trans-platinum compounds,” European Journal of Inorganic Chemistry, vol. 2009, no. 10, pp. 1293–1302, 2009.
[298]  B. T. Benedetti, S. Quintal, and N. P. Farrell, “Modulation of drug activation profiles through carboxylate ligand modification in cytotoxic trans-platinum planar amine compounds,” Dalton Transactions, vol. 40, no. 41, pp. 10983–10988, 2011.
[299]  C. Musetti, A. A. Nazarov, N. P. Farrell, and C. Sissi, “DNA reactivity profile of trans-platinum planar amine derivatives,” ChemMedChem, vol. 6, no. 7, pp. 1283–1290, 2011.
[300]  R. F. Murphy, E. Komlodi-Pasztor, R. Robey, F. M. Balis, N. P. Farrell, and T. Fojo, “Retained platinum uptake and indifference to p53 status make novel transplatinum agents active in platinum-resistant cells compared to cisplatin and oxaliplatin,” Cell Cycle, vol. 11, no. 5, pp. 963–973, 2012.
[301]  M. T. Johnson, E. W. Neuse, C. E. J. van Rensburg, and E. Kreft, “Cell growth-inhibiting properties of selected carrier-bound, monoamine-coordinated platinum(II) compounds,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 13, no. 2, pp. 55–67, 2003.
[302]  G. H. W. Milburn and M. R. Truter, “The crystal structures of cis- and trans-dichlorodiammineplatinum(II),” Journal of the Chemical Society A: Inorganic, Physical, Theoretical, pp. 1609–1616, 1966.
[303]  S. Neidle, I. M. Ismail, and P. J. Sadler, “The structure of the antitumor complex cis(diammino) (1,1-cyclobutanedicarboxylato)-Pt(II): X ray and nmr studies,” Journal of Inorganic Biochemistry, vol. 13, no. 3, pp. 205–212, 1980.
[304]  B. Beagley, D. W. J. Cruickshank, C. A. McAuliffe et al., “The crystal and molecular structure of cis-diammine-1,1-cyclobutanedicarboxoplatinum(II) [cis-Pt(NH3)2CBDCA]. Dynamic puckering of the cyclobutane ring,” Journal of Molecular Structure, vol. 130, no. 1-2, pp. 97–102, 1985.
[305]  L. A. E. Batista de Carvalho, M. P. M. Marques, C. Martin, S. F. Parker, and J. Tomkinson, “Inelastic neutron scattering study of PtII complexes displaying anticancer properties,” ChemPhysChem, vol. 12, no. 7, pp. 1334–1341, 2011.
[306]  R. L. Benson and T. L. Gustafson, “Comparative study of the interactions of cisplatin and carboplatin with nucleotides using UV resonance Raman spectroscopy,” Biopolymers, vol. 33, no. 11, pp. 1631–1641, 1993.
[307]  B. Giese, G. B. Deacon, J. Kuduk-Jaworska, and D. McNaughton, “Density functional theory and surface enhanced Raman spectroscopy characterization of novel platinum drugs,” Biopolymers, vol. 67, no. 4-5, pp. 294–297, 2002.
[308]  B. Giese and D. McNaughton, “Interaction of anticancer drug cisplatin with guanine: density functional theory and surface-enhanced raman spectroscopy study,” Biopolymers, vol. 72, no. 6, pp. 472–489, 2003.
[309]  O. Vrána, V. Ma?ek, V. Dra?an, and V. Brabec, “Raman spectroscopy of DNA modified by intrastrand cross-links of antitumor cisplatin,” Journal of Structural Biology, vol. 159, no. 1, pp. 1–8, 2007.
[310]  A. Barhoumi, D. Zhang, F. Tam, and N. J. Halas, “Surface-enhanced raman spectroscopy of DNA,” Journal of the American Chemical Society, vol. 130, no. 16, pp. 5523–5529, 2008.
[311]  H. H. Zeng, Z. H. Xu, and K. Wang, “FT-Raman studies on the transformation of G-actin to F-actin, the binding of cisplatin and transplatin to F-actin and the effects of the conformation of F-actin,” International Journal of Biological Macromolecules, vol. 20, no. 2, pp. 107–113, 1997.
[312]  Y. Yue, X. Chen, J. Qin, and X. Yao, “Spectroscopic investigation on the binding of antineoplastic drug oxaliplatin to human serum albumin and molecular modeling,” Colloids and Surfaces B: Biointerfaces, vol. 69, no. 1, pp. 51–57, 2009.
[313]  K. D. Taylor, R. Goel, F. H. Shirazi et al., “Pressure tuning infrared spectroscopic study of cisplatin-induced structural changes in a phosphatidylserine model membrane,” British Journal of Cancer, vol. 72, no. 6, pp. 1400–1405, 1995.
[314]  M. P. M. Marques, F. Borges, A. M. Amorim da Costa, and L. A. E. Batista de Carvalho, “Vibrational spectroscopy studies on biologically relevant molecules: from anticancer agents to drugs of abuse,” in New Approaches in Biomedical Spectroscopy, pp. 338–363, American Chemical Society, 2007.
[315]  A. M. Amado, M. M. Nolasco, and P. J. A. Ribeiro-Claro, “Probing pseudopolymorphic transitions in pharmaceutical solids using Raman spectroscopy: hydration and dehydration of theophylline,” Journal of Pharmaceutical Sciences, vol. 96, no. 5, pp. 1366–1379, 2007.
[316]  C. Gendrin, Y. Roggo, and C. Collet, “Pharmaceutical applications of vibrational chemical imaging and chemometrics: a review,” Journal of Pharmaceutical and Biomedical Analysis, vol. 48, no. 3, pp. 533–553, 2008.
[317]  F. Paiva-Martins, V. Rodrigues, R. Calheiros, and M. P. Marques, “Characterization of antioxidant olive oil biophenols by spectroscopic methods,” Journal of the Science of Food and Agriculture, vol. 91, no. 2, pp. 309–314, 2011.
[318]  L. A. E. Batista de Carvalho and M. P. M. Marques, “Raman microspectroscopy: applications in life sciences,” in Image Analysis in Life Sciences, Research Signpost, 2009.
[319]  Y. Wu, G. D. McEwen, S. Harihar, S. M. Baker, D. B. DeWald, and A. Zhou, “BRMS1 expression alters the ultrastructural, biomechanical and biochemical properties of MDA-MB-435 human breast carcinoma cells: an AFM and Raman microspectroscopy study,” Cancer Letters, vol. 293, no. 1, pp. 82–91, 2010.
[320]  V. V. Pully, A. Lenferink, and C. Otto, “Hybrid Rayleigh, Raman and two-photon excited fluorescence spectral confocal microscopy of living cells,” Journal of Raman Spectroscopy, vol. 41, no. 6, pp. 599–608, 2010.
[321]  A. B. Zoladek, R. K. Johal, S. Garcia-Nieto et al., “Label-free molecular imaging of immunological synapses between dendritic and T cells by Raman micro-spectroscopy,” The Analyst, vol. 135, no. 12, pp. 3205–3212, 2010.
[322]  M. M. Mariani, P. J. R. Day, and V. Deckert, “Applications of modern micro-Raman spectroscopy for cell analyses,” Integrative Biology, vol. 2, no. 2-3, pp. 94–101, 2010.
[323]  F. Draux, C. Gobinet, J. Sulé-Suso et al., “Raman spectral imaging of single cancer cells: probing the impact of sample fixation methods,” Analytical and Bioanalytical Chemistry, vol. 397, no. 7, pp. 2727–2737, 2010.
[324]  S. Verrier, I. Notingher, J. M. Polak, and L. L. Hench, “In situ monitoring of cell death using Raman microspectroscopy,” Biopolymers, vol. 74, no. 1-2, pp. 157–162, 2004.
[325]  L. Buriankova, Z. Nadova, D. Jancura et al., “Synchrotron based fourier-transform infrared microspectroscopy as sensitive technique for the detection of early apoptosis in U-87 MG cells,” Laser Physics Letters, vol. 7, no. 8, pp. 613–620, 2010.
[326]  C. Pezzei, J. D. Pallua, G. Schaefer et al., “Characterization of normal and malignant prostate tissue by Fourier transform infrared microspectroscopy,” Molecular BioSystems, vol. 6, no. 11, pp. 2287–2295, 2010.
[327]  K. Wehbe, R. Pineau, S. Eimer, A. Vital, H. Loiseau, and G. Déléris, “Differentiation between normal and tumor vasculature of animal and human glioma by FTIR imaging,” The Analyst, vol. 135, no. 12, pp. 3052–3059, 2010.
[328]  G. Tosi, C. Conti, E. Giorgini et al., “FTIR microspectroscopy of melanocytic skin lesions: a preliminary study,” The Analyst, vol. 135, no. 12, pp. 3213–3219, 2010.
[329]  J. Sulé-Suso and G. Cinque, “Infrared microspectroscopy in cancer diagnosis. Do we need synchrotron light?” Microscopy and Analysis, vol. 24, pp. 17–20, 2010.
[330]  C. Matth?us, A. Kale, T. Chernenko, V. Torchilin, and M. Diem, “New ways of imaging uptake and intracellular fate of liposomal drug carrier systems inside individual cells, based on raman microscopy,” Molecular Pharmaceutics, vol. 5, no. 2, pp. 287–293, 2008.
[331]  A. Tfayli, O. Piot, F. Pitre, and M. Manfait, “Follow-up of drug permeation through excised human skin with confocal Raman microspectroscopy,” European Biophysics Journal, vol. 36, no. 8, pp. 1049–1058, 2007.
[332]  F. Draux, P. Jeannesson, A. Beljebbar et al., “Raman spectral imaging of single living cancer cells: a preliminary study,” The Analyst, vol. 134, no. 3, pp. 542–548, 2009.
[333]  H. Nawaz, F. Bonnier, A. D. Meade, F. M. Lyng, and H. J. Byrne, “Comparison of subcellular responses for the evaluation and prediction of the chemotherapeutic response to cisplatin in lung adenocarcinoma using Raman spectroscopy,” The Analyst, vol. 136, no. 12, pp. 2450–2463, 2011.
[334]  J. Sulé-Suso, D. Skingsley, G. D. Sockalingum et al., “FT-IR microspectroscopy as a tool to assess lung cancer cells response to chemotherapy,” Vibrational Spectroscopy, vol. 38, no. 1-2, pp. 179–184, 2005.
[335]  H. Nawaz, F. Bonnier, P. Knief et al., “Evaluation of the potential of Raman microspectroscopy for prediction of chemotherapeutic response to cisplatin in lung adenocarcinoma,” The Analyst, vol. 135, no. 12, pp. 3070–3076, 2010.
[336]  L. Corte, P. Rellini, L. Roscini, F. Fatichenti, and G. Cardinali, “Development of a novel, FTIR (Fourier transform infrared spectroscopy) based, yeast bioassay for toxicity testing and stress response study,” Analytica Chimica Acta, vol. 659, no. 1-2, pp. 258–265, 2010.
[337]  A. Saha and V. V. Yakovlev, “Towards a rational drug design: Raman micro-spectroscopy analysis of prostate cancer cells treated with an aqueous extract of Nerium Oleander,” Journal of Raman Spectroscopy, vol. 40, no. 11, pp. 1459–1460, 2009.
[338]  G. Bellisola, M. Della Peruta, M. Vezzalini et al., “Tracking infrared signatures of drugs in cancer cells by fourier transform microspectroscopy,” The Analyst, vol. 135, no. 12, pp. 3077–3086, 2010.
[339]  H. Gao, F. Xia, C. Huang, and K. Lin, “Density functional theory calculations on the molecular structures and vibration spectra of platinum(II) antitumor drugs,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 78, no. 4, pp. 1234–1239, 2011.
[340]  N. I. Dodoff, “A dft/ecp-small basis set modelling of cisplatin: molecular structure and vibrational spectrum,” Computational Molecular Bioscience, vol. 2, no. 2, pp. 35–44, 2012.
[341]  D. Michalska and R. Wysokiński, “The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory,” Chemical Physics Letters, vol. 403, no. 1–3, pp. 211–217, 2005.
[342]  V. P. Ting, M. Schmidtmann, C. C. Wilson, and M. T. Weller, “Cisplatin: polymorphism and structural insights into an important chemotherapeutic drug,” Angewandte Chemie - International Edition, vol. 49, no. 49, pp. 9408–9411, 2010.
[343]  J. V. Burda, M. Zeizinger, and J. Leszczynski, “Hydration process as an activation of trans- and cisplatin complexes in anticancer treatment. DFT and ab initio computational study of thermodynamic and kinetic parameters,” Journal of Computational Chemistry, vol. 26, no. 9, pp. 907–914, 2005.
[344]  R. Wysokiński, J. Kuduk-Jaworska, and D. Michalska, “Electronic structure, Raman and infrared spectra, and vibrational assignment of carboplatin. Density functional theory studies,” Journal of Molecular Structure: THEOCHEM, vol. 758, no. 2-3, pp. 169–179, 2006.
[345]  E. C. Beret, R. R. Pappalardo, D. Marx, and E. S. Marcos, “Characterizing Pt-derived anticancer drugs from first principles: the case of oxaliplatin in aqueous solution,” ChemPhysChem, vol. 10, no. 7, pp. 1044–1052, 2009.
[346]  R. Wysokiński, K. Hernik, R. Szostak, and D. Michalska, “Electronic structure and vibrational spectra of cis-diammine(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study,” Chemical Physics, vol. 333, no. 1, pp. 37–48, 2007.
[347]  D. Bouvet, A. Michalowicz, S. Crauste-Manciet, D. Brossard, and K. Provost, “EXAFS and IR structural study of platinum-based anticancer drugs' degradation by diethyl dithiocarbamate,” Inorganic Chemistry, vol. 45, no. 8, pp. 3393–3398, 2006.
[348]  M. Obata, M. Harada, H. Ohi, S. Hirohara, M. Gottchaldt, and S. Yano, “Extended X-ray absorption fine structure study on reaction of anti-tumor platinum complexes with reduced glutathione,” Chemical and Pharmaceutical Bulletin, vol. 57, no. 10, pp. 1107–1109, 2009.
[349]  K. Provost, D. Bouvet-Muller, S. Crauste-Manciet et al., “EXAFS structural study of platinum-based anticancer drugs degradation in presence of sulfur nucleophilic species,” Biochimie, vol. 91, no. 10, pp. 1301–1306, 2009.
[350]  E. Dartyge, C. Depautex, J. M. Dubuisson et al., “X-ray absorption in dispersive mode: a new spectrometer and a data acquisition system for fast kinetics,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 246, no. 1–3, pp. 452–460, 1986.
[351]  G. Cossa, L. Gatti, F. Zunino, and P. Perego, “Strategies to improve the efficacy of platinum compounds,” Current Medicinal Chemistry, vol. 16, no. 19, pp. 2355–2365, 2009.
[352]  E. Gabano, M. Ravera, and D. Osella, “The drug targeting and delivery approach applied to Pt-antitumour complexes. A coordination point of view,” Current Medicinal Chemistry, vol. 16, no. 34, pp. 4544–4580, 2009.
[353]  G. N. C. Chiu, M. Y. Wong, L. U. Ling et al., “Lipid-based nanoparticulate systems for the delivery of anti-cancer drug cocktails: implications on pharmacokinetics and drug toxicities,” Current Drug Metabolism, vol. 10, no. 8, pp. 861–874, 2009.
[354]  N. P. Farrell, “Platinum formulations as anticancer drugs clinical and pre-clinical studies,” Current Topics in Medicinal Chemistry, vol. 11, no. 21, pp. 2623–2631, 2011.
[355]  C. Sessa, C. Minoia, A. Ronchi et al., “Phase I clinical and pharmacokinetic study of the oral platinum analogue JM216 given daily for 14 days,” Annals of Oncology, vol. 9, no. 12, pp. 1315–1322, 1998.
[356]  A. A. Bhirde, S. Patel, A. A. Sousa et al., “Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice,” Nanomedicine, vol. 5, no. 10, pp. 1535–1546, 2010.
[357]  J. Lin, Y. Li, S. Feng et al., “Raman spectroscopic analysis of cytotoxic effect of cisplatin-treated leukemic cells,” in 8th International Conference on Photonics and Imaging in Biology and Medicine (PIBM '09), Proceedings of SPIE, Wuhan, China, August 2009.
[358]  Z. H. Tao, H. L. Yao, G. W. Wang et al., “Using Raman spectroscopy to analyze apoptosis of gastric cancer cells induced by cisplatin,” Guang Pu Xue Yu Guang Pu Fen Xi, vol. 29, no. 9, pp. 2442–2445, 2009.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133