全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Performance Evaluation of an Induction Machine with Auxiliary Winding for Wind Turbine Power

DOI: 10.5402/2012/167192

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of this paper is to reinforce with theoretical and experimental evaluation the effectiveness of employing an induction generator to enhance the performance of a small wind energy converter (SWEC). With this generator, the SWEC works more efficiently and therefore can produce more energy in a unit turbine area. To verify the SWEC performance, a model has been proposed, simulated, built, and experimentally tested over a range of operating conditions. The results demonstrate a significant increase in output power with an induction generator that employs an auxiliary winding, which is only magnetically coupled to the stator main winding. It is also shown that the operating performance of the induction machine with the novel proposed technique is significantly enhanced in terms of suppressed signal distortion and harmonics, severity of resistive losses and overheating, power factor, and preventing high inrush current at starting. 1. Introduction Wind energy has been shown to be one of the most feasible sources of renewable energy. It presents attractive opportunities to a wide range of people, including investors, entrepreneurs, and users. Wind along with other renewable energy sources such as bio and hydro require electromechanical systems to convert naturally available energy sources to rotation through prime movers and then to electricity through electric generators. The prime movers and generators are critical components of such systems that must be affordable, reliable, environmentally safe, and user-friendly. Self-excited induction generators (SEIG) (squirrel cage and/or wound rotor) are strong candidate for such applications. The fact that they are not yet widely used in the field reflects a major gap in knowledge. An attractive option is to take an “off-the-shelve” induction machine and modify it suitably to provide optimized performance in terms of efficiency, suppressed signal distortion and harmonics, resistive losses and overheating, and power factor. In the 1935s, Bassett and Potter [1] demonstrated the possibility of using an induction machine, in the self-excited mode. Since then, the use of induction machines as generators is becoming more popular for the renewable sources [2–5]. The simplicity and flexibility exhibited by the induction machine in providing electromechanical energy conversion make it the favoured choice for wind systems operating with an existing utility grid. Induction generators in general have many advantages: simple, cheap, reliable, brushless (squirrel cage rotor), no synchronizing equipment, absence of DC

References

[1]  E. D. Bassett and F. M. Potter, “Capacitive excitation for induction generators,” Electrical Engineering, vol. 35, pp. 540–545, 1935.
[2]  P. K. Shadhu Khan and J. K. Chatterjee, “Three-phase induction generators: a discussion on performance,” Electric Machines and Power Systems, vol. 27, no. 8, pp. 813–832, 1999.
[3]  R. C. Bansal, D. P. Kothari, and T. S. Bhatti, “Induction generator for isolated hybrid power system applications: a review,” in Proceedings of the 24th National Renewable Energy Convention, pp. 462–467, Bombay, India, December 2000.
[4]  C. Grantham, F. Rahman, and D. Seyoum, “A regulated self-excited induction generator for use in a remote area power supply,” International Journal of Renewable Energy, vol. 2, no. 1, pp. 234–239, 2000.
[5]  R. C. Bansal, T. S. Bhatti, and D. P. Kothari, “Induction generator for isolated hybrid power system applications: a review,” Journal of the Institution of Engineers, vol. 83, pp. 262–269, 2003.
[6]  B. Singh, R. B. Saxena, S. S. Murthy, and B. P. Singh, “A single-phase induction generator for lighting loads in remote areas,” International Journal of Electrical Engineering Education, vol. 25, no. 3, pp. 269–275, 1988.
[7]  Y. H. A. Rahim, A. I. Alolah, and R. I. Al-Mudaiheem, “Performance of single phase induction generators,” IEEE Transactions on Energy Conversion, vol. 8, no. 3, pp. 389–395, 1993.
[8]  O. Ojo and I. Bhat, “Analysis of single-phase self-excited induction generators: model development and steady-state calculations,” IEEE Transactions on Energy Conversion, vol. 10, no. 2, pp. 254–260, 1995.
[9]  E. Muljadi, T. A. Lipo, and D. W. Novotny, “Power factor enhancement of induction machines by means of solid-state excitation,” IEEE Transactions on Power Electronics, vol. 4, no. 4, pp. 409–418, 1989.
[10]  T. A. Lettenmaier, D. W. Novotny, and T. A. Lipo, “Single-phase induction motor with an electronically controlled capacitor,” IEEE Transactions on Industry Applications, vol. 27, no. 1, pp. 38–43, 1991.
[11]  I. Tamrakar and O. P. Malik, “Power factor correction of induction motors using PWM inverter fed auxiliary stator winding,” IEEE Transactions on Energy Conversion, vol. 14, no. 3, pp. 426–432, 1999.
[12]  C. Suciu, L. Dafinca, M. Kansara, and I. Margineanu, “Switched capacitor fuzzy control for power factor correction in inductive circuits,” in Proceedings of the Power Electronics Specialists Conference, Galway, Irlanda, June 2000.
[13]  W. Hanguang, C. XIUMIN, L. Xianliang, and Y. Linjuan, “An investigation on three-phase capacitor induction motor,” in Proceedings of Third Chinese International Conference on Electrical Machines, pp. 87–90, Xi’an, China, August 1999.
[14]  R. C. Bansal, “Three-phase self-excited induction generators: an overview,” IEEE Transactions on Energy Conversion, vol. 20, no. 2, pp. 292–299, 2005.
[15]  J. M. Elder, J. T. Boys, and J. L. Woodward, “Self-excited induction machine as low cost generator,” IEE Proceedings C, vol. 131, no. 2, pp. 33–41, 1984.
[16]  S. S. Murthy, “Novel self-excited self-regulated single phase induction generator,” IEEE Transactions on Energy Conversion, vol. 8, no. 3, pp. 377–382, 1993.
[17]  T. Fukami, Y. Kaburaki, S. Kawahara, and T. Miyamoto, “Performance analysis of a self-regulated self-excited single-phase induction generator using a three-phase machine,” IEEE Transactions on Energy Conversion, vol. 14, no. 3, pp. 622–627, 1999.
[18]  F. Parasiliti and M. Villani, “Design of high efficiency induction motors with die-casting copper rotors,” in Energy Efficiency in Motor Driven Systems, F. Parasiliti and P. Bertoldi, Eds., pp. 144–151, Springer, 2003.
[19]  E. F. Brush, J. G. Cowie, D. T. Peters, and D. J. Van Son, “Die-cast copper motor rotors: motor test results, copper compared to aluminum,” in Energy Efficiency In Motor Driven Systems, F. Parasiliti and P. Bertoldi, Eds., pp. 136–143, Springer, 2003.
[20]  R. C. Bansal, T. S. Bhatti, and D. P. Kothari, “Some aspects of grid connected wind electric energy conversion systems,” Journal of the Institution of Engineers, vol. 82, pp. 25–28, 2001.
[21]  Nordisk Regelsamling (Nordic Grid Code), Nordel, 2004.
[22]  T. S. Bhatti, R. C. Bansal, and D. P. Kothari, “Reactive power control of isolated hybrid power systems,” in Proceedings of the International Conference on Computer Applications in Electrical Engineering Recent Advances, pp. 626–632, Roorkee, India, February 2002.
[23]  B. Singh, S. S. Murthy, and S. Gupta, “Analysis and design of STATCOM-based voltage regulator for self-excited induction generators,” IEEE Transactions on Energy Conversion, vol. 19, no. 4, pp. 783–790, 2004.
[24]  J. M. Elder, J. T. Boys, and J. L. Woodward, “The process of self excitation in induction generators,” IEE Proceedings B, vol. 130, no. 2, pp. 103–108, 1983.
[25]  S. N. Mahato, M. P. Sharma, and S. P. Singh, “Transient performance of a single-phase self-regulated self-excited induction generator using a three-phase machine,” Electric Power Systems Research, vol. 77, no. 7, pp. 839–850, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133