All Title Author
Keywords Abstract

Is There an Association between Keloids and Blood Groups?

DOI: 10.5402/2012/750908

Full-Text   Cite this paper   Add to My Lib


Objective. The aim of the study is to investigate the possible associations between the blood groups ABO and Rhesus systems and the presence of keloids in patients with black skin. Method. This case-control study was conducted between September 2007 and August 2011 comparing dermatologic outpatients with keloids to matched controls recruited in preanesthetic consultation at Tokoin Teaching Hospital of Lomé (Togo). Results. The distribution of different ABO blood groups and Rhesus blood groups in both groups (cases versus controls) was not significantly different. This distribution of different blood groups was superimposed on the general population of blood donors at the National Blood Transfusion Center of Lomé. Univariate analysis between each blood group and the presence of keloid does not yield any statistically significant association between blood groups and presence of keloids in the subjects. Conclusion. The study shows no significant association between blood groups and the presence of keloids in our patients. Further investigation needs to be conducted to elucidate this hypothesis further by conducting multicenter studies of several ethnic groups. 1. Introduction Keloids are defined as intradermal tumors corresponding to an abnormal response of tissue to injury in predisposed individuals [1]. Factors that play a major role in keloid development are genetic predisposition coupled with some forms of skin trauma. Transforming growth factor has been implicated as the main factor responsible for the abnormal proliferation of keloid fibroblasts and excessive production of collagen. The red cell alloantigens of blood group are present on the membrane surface of red blood cells and certain epithelial cells [2]. Several publications have documented the associations between blood group and certain skin diseases [3–9]. In a study conducted in 1969 to 1970 on 486 patients with keloids in the city of Madras, South Indian, Ramakrishnan et al. in 1974 had found a predominance of blood group A, compared to the local population of this city (34.96% against 21.38% in the local population) [10]. And up to today, no studies have confirmed this association. In the context of our study, in the sub-Saharan Africa, the prevalence of keloids is high, and keloids represent 1.2% of dermatological consultations in Lomé [11]. In addition, the difficulties of management are arguments to search for possible factors associated with these conditions, and for their possible prevention. The main objective of this study is to investigate possible associations between blood


[1]  R. S. English and P. D. Shenefelt, “Keloids and hypertrophic scars,” Dermatologic Surgery, vol. 25, no. 8, pp. 631–638, 1999.
[2]  M. E. Reid and N. Mohandas, “Red blood cell blood group antigens: structure and function,” Seminars in Hematology, vol. 41, no. 2, pp. 93–117, 2004.
[3]  G. Garratty, “Blood groups and disease: a historical perspective,” Transfusion Medicine Reviews, vol. 14, no. 4, pp. 291–301, 2000.
[4]  H. Shahkar, M. K. Fallahzadeh, and M. R. Namazi, “ABO blood groups and pemphigus vulgaris: no relationship,” Acta Dermatovenerologica Alpina, Pannonica et Adriatica, vol. 19, no. 1, pp. 49–51, 2010.
[5]  C. P. Karakousis, E. Evlogimenos, and O. Suh, “Blood groups and malignant melanoma,” Journal of Surgical Oncology, vol. 33, no. 1, pp. 24–26, 1986.
[6]  J. Xie, A. A. Qureshi, Y. Li, and J. Han, “ABO blood group and incidence of skin cancer,” PLoS ONE, vol. 5, no. 8, Article ID e11972, 2010.
[7]  V. De Giorgi, M. Grazzini, A. Gori et al., “ABO blood group and risk of cutaneous malignant melanoma,” European Journal of Cancer Prevention, vol. 20, no. 2, pp. 121–122, 2011.
[8]  S. A. M. Balajee, T. Menon, and S. Ranganathan, “ABO blood groups in relation to the infection rate of dermatophytosis,” Mycoses, vol. 39, no. 11-12, pp. 475–478, 1996.
[9]  S. A. Berger, N. A. Young, and S. C. Edberg, “Relationship between infectious diseases and human blood type,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 8, no. 8, pp. 681–689, 1989.
[10]  K. M. Ramakrishnan, K. P. Thomas, and C. R. Sundararajan, “Study of 1,000 patients with keloids in South India,” Plastic and Reconstructive Surgery, vol. 53, no. 3, pp. 276–280, 1974.
[11]  P. Pitche, S. Tchamdja, Y. Amanga, and K. Tchangai-Walla, “Skin diseases in hospital environment in Lome (Togo),” Nouvelles Dermatologiques, vol. 16, no. 8, pp. 369–373, 1997.
[12]  A. Loua, M. R. Lamah, N. Y. Haba, and M. Camara, “Frequency of blood groups ABO and rhesus D in the Guinean population,” Transfusion Clinique et Biologique, vol. 14, no. 5, pp. 435–439, 2007.
[13]  C. Dulat, J. L. Rey, and C. Trolet, “Répartition ethnique des groupes sanguins en C?te d'Ivoire,” Medecine Afrique Noire, vol. 36, pp. 884–890, 1989.
[14]  J. J. Brown and A. Bayat, “Genetic susceptibility to raised dermal scarring,” British Journal of Dermatology, vol. 161, no. 1, pp. 8–18, 2009.
[15]  B. Shih and A. Bayat, “Genetics of keloid scarring,” Archives of Dermatological Research, vol. 302, no. 5, pp. 319–339, 2010.
[16]  A. G. Marneros, J. E. C. Norris, S. Watanabe, E. Reichenberger, and B. R. Olsen, “Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11,” Journal of Investigative Dermatology, vol. 122, no. 5, pp. 1126–1132, 2004.
[17]  Y. Chen, J. H. Gao, X. J. Liu, X. Yan, and M. Song, “Characteristics of occurrence for Han Chinese familial keloids,” Burns, vol. 32, no. 8, pp. 1052–1059, 2006.
[18]  J. A. Clark, M. L. Turner, L. Howard, H. Stanescu, R. Kleta, and J. B. Kopp, “Description of familial keloids in five pedigrees: evidence for autosomal dominant inheritance and phenotypic heterogeneity,” BMC Dermatology, vol. 9, article 8, 2009.
[19]  M. A. Ferguson Smith, D. A. Aitken, C. Turleau, and J. De Grouchy, “Localisation of the human ABO: Np-1 : AK-1 linkage group by regional assignment of AK-1 to 9q34,” Human Genetics, vol. 34, no. 1, pp. 35–43, 1976.
[20]  Y. Colin, B. Cherif-Zahar, C. Le Van Kim, I. Mouro, and J. P. Cartron, “Recent advances in molecular and genetic analysis of Rh blood group structures,” Journal of Medical Primatology, vol. 22, no. 1, pp. 36–43, 1993.
[21]  J. J. Brown, W. E. R. Ollier, W. Thomson, and A. Bayat, “Positive association of HLA-DRB1*15 with keloid disease in Caucasians,” International Journal of Immunogenetics, vol. 35, no. 4-5, pp. 303–307, 2008.
[22]  W. S. Lu, J. F. Wang, S. Yang et al., “Association of HLA-DQA1 and DQB1 alleles with keloids in Chinese Hans,” Journal of Dermatological Science, vol. 52, no. 2, pp. 108–117, 2008.


comments powered by Disqus

Contact Us


微信:OALib Journal