All Title Author
Keywords Abstract

Evaluation of the Pozzolanic Activity of Sewage Sludge Ash

DOI: 10.5402/2012/487037

Full-Text   Cite this paper   Add to My Lib


Raw sewage sludge was characterized by XRD, FTIR, SEM, and TGA techniques and incinerated in temperature range 650–950°C for 2?h. The effect of incineration temperature on the microstructure and pozzolanic activity of the resultant ash was investigated by techniques mentioned above as well as Chapelle test. It was concluded that incineration of sewage sludge affects the microstructure and pozzolanic activity of the resultant ash. During incineration at temperatures lower than 800°C, amorphous silica captures fixed carbon resulting from incomplete combustion conditions whereas at higher temperatures crystallization of amorphous silica was enhanced. Hydration products formed from hydrothermal treatment of silica fume with lime is amorphous whereas that of sewage sludge ash is fibrous. Hence, incineration of sewage sludge ash must be optimized at 800°C to preserve the pozzolanic activity of the resultant ash. 1. Introduction Sewage is the collection of wastewater effluents from domestic, hospital, commercial, industrial establishments, and rain water. The objective of sewage treatment is to produce treated sewage water and sewage sludge suitable for safe discharge into the environment or reuse [1]. The most common treatment options for sewage sludge include anaerobic digestion, aerobic digestion, and composting. Choice of the treatment method depends on the amount of sludge and other site-specific conditions [2]. Sewage sludge tends to accumulate heavy metals existing in the wastewater. The composition of sewage sludge and its content of heavy metals vary widely depending on the sludge origins and treatment options [3]. In past decades, sewage sludge was primarily disposed to landfills and seawaters [4]. Space limitations on existing landfills and increasing environmental concerns such as groundwater pollution from landfill leachate, odor emission and soil contamination have prompted the investigation of alternative disposal routes [5]. Sewage sludge has been used in agriculture as fertilizer and soil amendment [6]. However heavy metals such as Zn, Cu, Ni, Cd, Pb, Hg, and Cr are principal elements restricting the use of sludge for agricultural purposes [3]. The solidification/stabilization of sewage sludge in cementitious matrix has been evaluated [7]. Sewage sludge adversely affects durability of concrete, mainly due to the organic material which retards setting and heavy metals which interfere with the hardening reactions [8]. Hence, sewage sludge addition in concrete was limited to 10?wt.% and the solidified concrete was recommended for use in certain


[1]  L. S. Clescerl, A. E. Greenberg, and A. D. Eaton, Standard Methods For Examination of Water and Wastewater, American Public Health Association, Washington, DC, USA, 20th edition, 1987.
[2]  M. Eddy, Wastewater Engineering-Treatment, Disposal and Reuse, McGraw Hill, New York, NY, USA, 3rd edition, 1991.
[3]  P. C. Hsiau and S. L. Lo, “Extractabilities of heavy metals in chemically-fixed sewage sludges,” Journal of Hazardous Materials, vol. 58, no. 1–3, pp. 73–82, 1998.
[4]  H. ?degaard, B. Paulsrud, and I. Karlsson, “Wastewater sludge as a resource: sludge disposal strategies and corresponding treatment technologies aimed at sustainable handling of wastewater sludge,” Water Science and Technology, vol. 46, no. 10, pp. 295–303, 2002.
[5]  Y. J. Park and J. Heo, “Vitrification of fly ash from municipal solid waste incinerator,” Journal of Hazardous Materials, vol. 91, no. 1–3, pp. 83–93, 2002.
[6]  J. Casado-Vela, S. Sellés, J. Navarro et al., “Evaluation of composted sewage sludge as nutritional source for horticultural soils,” Waste Management, vol. 26, no. 9, pp. 946–952, 2006.
[7]  O. Malliou, M. Katsioti, A. Georgiadis, and A. Katsiri, “Properties of stabilized/solidified admixtures of cement and sewage sludge,” Cement and Concrete Composites, vol. 29, no. 1, pp. 55–61, 2007.
[8]  L. Feenestra, J. P. Brouwer, J. Frenay, and S. Bos, “Re-use of contaminated dredging sludge in a cement bound road base: full-scale demonstration project,” in Proceedings of the 5TH International Conference on the Environmental and Technical Implications of Construction with Alternative Materials (Wascon'03), p. 593, Iscowa-Inasmet, San Sebastian, Spain, 2003.
[9]  S. Valls, A. Yagüe, E. Vázquez, and C. Mariscal, “Physical and mechanical properties of concrete with added dry sludge from a sewage treatment plant,” Cement and Concrete Research, vol. 34, no. 12, pp. 2203–2208, 2004.
[10]  J. H. Tay, “Bricks manufactured from sludge,” Journal of the Environmental Engineering Division, vol. 113, p. 270, 1987.
[11]  R. B. Dean and M. J. Suess, “The risk to health of chemicals in sewage sludge applied to land,” Waste Management and Research, vol. 3, no. 3, pp. 251–278, 1985.
[12]  O. Malerius and J. Werther, “Modeling the adsorption of mercury in the flue gas of sewage sludge incineration,” Chemical Engineering Journal, vol. 96, no. 1–3, pp. 197–205, 2003.
[13]  O. Hjelmar, “Disposal strategies for municipal solid waste incineration residues,” Journal of Hazardous Materials, vol. 47, no. 1–3, pp. 345–368, 1996.
[14]  B. Khiari, F. Marias, F. Zagrouba, and J. Vaxelaire, “Analytical study of the pyrolysis process in a wastewater treatment pilot station,” Desalination, vol. 167, no. 1–3, pp. 39–47, 2004.
[15]  P. M. Bierman and C. J. Rosen, “Phosphate and trace metal availability from sewage-sludge incinerator ash,” Journal of Environmental Quality, vol. 23, no. 4, pp. 822–830, 1994.
[16]  M. T. Ali and W. F. Chang, “Strength properties of cement-stabilized municipal solid waste incinerator ash masonry bricks,” ACI Materials Journal, vol. 91, no. 3, pp. 256–263, 1994.
[17]  J. Monzó, J. Paya, M. V. Borrachero, and A. Córcoles, “Use of sewage sludge ash(SSA)-cement admixtures in mortars,” Cement and Concrete Research, vol. 26, no. 9, pp. 1389–1398, 1996.
[18]  J. H. Tay, W. K. Yip, and K. Y. Show, “Clay-blended sludge as lightweight aggregate concrete material,” Journal of Environmental Engineering, vol. 117, no. 6, pp. 834–844, 1991.
[19]  M. Anderson, R. G. Skerratt, J. P. Thomas, and S. D. Clay, “Case study involving using fluidised bed incinerator sludge ash as a partial clay substitute in brick manufacture,” Water Science and Technology, vol. 34, no. 3-4, pp. 507–515, 1996.
[20]  M. H. Al Sayed, I. M. Madany, and A. R. M. Buali, “Use of sewage sludge ash in asphaltic paving mixes in hot regions,” Construction and Building Materials, vol. 9, no. 1, pp. 19–23, 1995.
[21]  A. M. Dunster, “Incinerated sewage sludge ash (ISSA) in autoclaved aerated concrete (AAC),” Characterization of Mineral Wastes, Resources and Processing Technologies - Integrated Waste Management For the Production of Construction Material WRT 177/WR0115, 2007.
[22]  K. S. Wang, I. J. Chiou, C. H. Chen, and D. Wang, “Lightweight properties and pore structure of foamed material made from sewage sludge ash,” Construction and Building Materials, vol. 19, no. 8, pp. 627–633, 2005.
[23]  M. Devant, J. A. Cusidó, and C. Soriano, “Custom formulation of red ceramics with clay, sewage sludge and forest waste,” Applied Clay Science, vol. 53, p. 669, 2011.
[24]  J. R. Pan, C. Huang, J. J. Kuo, and S. H. Lin, “Recycling MSWI bottom and fly ash as raw materials for Portland cement,” Waste Management, vol. 28, no. 7, pp. 1113–1118, 2008.
[25]  L. Chen and D. F. Lin, “Stabilization treatment of soft subgrade soil by sewage sludge ash and cement,” Journal of Hazardous Materials, vol. 162, no. 1, pp. 321–327, 2009.
[26]  M. Cyr, M. Coutand, and P. Clastres, “Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials,” Cement and Concrete Research, vol. 37, no. 8, pp. 1278–1289, 2007.
[27]  H. S. Shi and L. L. Kan, “Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete,” Journal of Hazardous Materials, vol. 164, no. 2-3, pp. 750–754, 2009.
[28]  J. Monzó, J. Payá, M. V. Borrachero, and E. Peris-Mora, “Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content,” Cement and Concrete Research, vol. 29, no. 1, pp. 87–94, 1999.
[29]  C. M. A. Fontes, M. C. Barbosa, R. D. T. Filho, and J. P. Goncalves, “Potentiality of sewage sludge ash as mineral additive in cement mortar and high performance concrete,” in Proceedings of the International RILEM Conference on the Use of Recycled Materials in Buildings and Structures, p. 797, Barcelona, Spain, 2004.
[30]  J. H. Tay and K. Y. Show, “Municipal wastewater sludge as cementitious and blended cement materials,” Cement and Concrete Composites, vol. 16, no. 1, pp. 39–48, 1994.
[31]  J. Payá, J. Monzó, M. V. Borrachero et al., “Advantages in the use of fly ashes in cements containing pozzolanic combustion residues: Silica fume, sewage sludge ash, spent fluidized bed catalyst and rice husk ash,” Journal of Chemical Technology and Biotechnology, vol. 77, no. 3, pp. 331–335, 2002.
[32]  K. S. Wang, Y. S. Chang, K. Lin, and Z. Q. Huang, “The sintering characteristics of incinerator residues form municipal sewage sludge,” in Proceedings of the 9th Annual Meeting Sanitary Engineering, p. 211, Taipei, Taiwan, 1999.
[33]  S. C. Pan, D. H. Tseng, C. C. Lee, and C. Lee, “Influence of the fineness of sewage sludge ash on the mortar properties,” Cement and Concrete Research, vol. 33, no. 11, pp. 1749–1754, 2003.
[34]  S. Donatello, A. Freeman-Pask, M. Tyrer, and C. R. Cheeseman, “Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash,” Cement and Concrete Composites, vol. 32, no. 1, pp. 54–61, 2010.
[35]  C. H. Chen, I. J. Chiou, and K. S. Wang, “Sintering effect on cement bonded sewage sludge ash,” Cement and Concrete Composites, vol. 28, no. 1, pp. 26–32, 2006.
[36]  P. Garcés, M. Pérez Carrión, E. García-Alcocel, J. Payá, J. Monzó, and M. V. Borrachero, “Mechanical and physical properties of cement blended with sewage sludge ash,” Waste Management, vol. 28, no. 12, pp. 2495–2502, 2008.
[37]  D. H. Zeng, S. Z. Pan, and Li, “The study of the characteristics of sewage sludge ash and the development of reclamation techniques,” in Proceedings of the 12th Annual Meeting Sanitary Engineering, p. 221, Taipei, Taiwan, 2002.
[38]  T. Perraki, G. Kakali, and F. Kontoleon, “The effect of natural zeolites on the early hydration of Portland cement,” Microporous and Mesoporous Materials, vol. 61, no. 1–3, pp. 205–212, 2003.
[39]  ASTM designation, “Standard specification for coal fly ash and raw or calcined natural pozzolana for use as a mineral admixture in concrete,” Annual Book of ASTM Standards C 618-89, 1998.
[40]  T. Karayildirim, J. Yanik, M. Yuksel, and H. Bockhorn, “Characterisation of products from pyrolysis of waste sludges,” Fuel, vol. 85, no. 10-11, pp. 1498–1508, 2006.
[41]  R. Z. LeGeros and J. P. LeGeros, “Dense hydroxyapatite,” in An Introduction To Bioceramics, L. L. Hench and J. Wilson, Eds., p. 139, World Scientific, Singapore, 1993.
[42]  K. Baltakys, R. Jauberthie, R. Siauciunas, and R. Kaminskas, “Influence of modification of SiO2 on the formation of calcium silicate hydrate,” Materials Science, vol. 25, no. 3, pp. 663–670, 2007.
[43]  J. A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworths, London, UK, 3rd edition, 1975.
[44]  Y. Ping, R. J. Kirkpatrick, P. Brent, P. F. McMillan, and X. Cong, “Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy,” Journal of the American Ceramic Society, vol. 82, no. 3, pp. 742–748, 1999.
[45]  J. Zhang and G. W. Scherer, “Comparison of methods for arresting hydration of cement,” Cement and Concrete Research, vol. 41, no. 10, pp. 1024–1036, 2011.


comments powered by Disqus