All Title Author
Keywords Abstract

Mitochondrial Regulation by PINK1-Parkin Signaling

DOI: 10.5402/2012/926160

Full-Text   Cite this paper   Add to My Lib


Two genes responsible for the juvenile Parkinson’s disease (PD), PINK1 and Parkin, have been implicated in mitochondrial quality control. The inactivation of PINK1, which encodes a mitochondrial kinase, leads to age-dependent mitochondrial degeneration in Drosophila. The phenotype is closely associated with the impairment of mitochondrial respiratory chain activity and defects in mitochondrial dynamics. Drosophila genetic studies have further revealed that PINK1 is an upstream regulator of Parkin and is involved in the mitochondrial dynamics and motility. A series of cell biological studies have given rise to a model in which the activation of PINK1 in damaged mitochondria induces the selective elimination of mitochondria in cooperation with Parkin through the ubiquitin-proteasome and autophagy machineries. Although the relevance of this pathway to PD etiology is still unclear, approaches using stem cells from patients and animal models will help to understand the significance of mitochondrial quality control by the PINK1-Parkin pathway in PD and in healthy individuals. Here I will review recent advances in our understanding of the PINK1-Parkin signaling and will discuss the roles of PINK1-Parkin signaling for mitochondrial maintenance and how the failure of this signaling leads to neurodegeneration. 1. Introduction While eukaryotic cells have acquired the highly efficient power-generating system of aerobic respiration by incorporating mitochondria into the cytosol, they can suffer from problems related to uncontrollable oxidization. Nondividing cells or tissues with high energy demands in long-living animals require countermeasures against this issue because mitochondrial dysregulation has been implicated as one cause of neurodegeneration. The neuropathology of Parkinson’s disease, the second most common neurodegenerative disorder after Alzheimer's disease, is characterized by the degeneration of dopaminergic neurons in the midbrain. Mitochondrial dysfunction has long been a suspected cause of PD because the Parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is as a selective inhibitor of mitochondrial complex I. Reduced complex I activity has also been reported in autopsied brains and platelets from patients with sporadic PD [1–3], while mutations or polymorphisms in mitochondrial DNA are implicated in the genetic risk for PD [4]. Animals treated with a variety of mitochondrial toxins, including MPTP, 6-hydroxy-dopamine (6-OHDA), rotenone, and paraquat, partly recapitulate PD pathology, suggesting that mitochondrial


[1]  W. D. Parker Jr., S. J. Boyson, and J. K. Parks, “Abnormalities of the electron transport chain in idiopathic Parkinson's disease,” Annals of Neurology, vol. 26, no. 6, pp. 719–723, 1989.
[2]  A. H. V. Schapira, J. M. Cooper, D. Dexter, J. B. Clark, P. Jenner, and C. D. Marsden, “Mitochondrial complex I deficiency in Parkinson's disease,” Journal of Neurochemistry, vol. 54, no. 3, pp. 823–827, 1990.
[3]  P. M. Keeney, J. Xie, R. A. Capaldi, and J. P. Bennett, “Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled,” Journal of Neuroscience, vol. 26, no. 19, pp. 5256–5264, 2006.
[4]  A. Bender, K. J. Krishnan, C. M. Morris et al., “High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease,” Nature Genetics, vol. 38, no. 5, pp. 515–517, 2006.
[5]  S. Hisahara and S. Shimohama, “Toxin-induced and genetic animal models of Parkinson's disease,” Parkinson's Disease, vol. 2011, Article ID 951709, 14 pages, 2011.
[6]  R. L. de Vries and S. Przedborski, “Mitophagy and Parkinson's disease: be eaten to stay healthy,” Molecular and Cellular Neuroscience. In press.
[7]  G. Ashrafi and T. L. Schwarz, “The pathways of mitophagy for quality control and clearance of mitochondria,” Cell Death and Differentiation. In press.
[8]  T. Kitada, S. Asakawa, N. Hattori et al., “Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism,” Nature, vol. 392, no. 6676, pp. 605–608, 1998.
[9]  Y. Imai, M. Soda, and R. Takahashi, “Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity,” The Journal of Biological Chemistry, vol. 275, no. 46, pp. 35661–35664, 2000.
[10]  H. Shimura, N. Hattori, S. I. Kubo et al., “Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase,” Nature Genetics, vol. 25, no. 3, pp. 302–305, 2000.
[11]  Y. Zhang, J. Gao, K. K. K. Chung, H. Huang, V. L. Dawson, and T. M. Dawson, “Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 24, pp. 13354–13359, 2000.
[12]  D. M. Wenzel, A. Lissounov, P. S. Brzovic, and R. E. Klevit, “UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids,” Nature, vol. 474, no. 7349, pp. 105–108, 2011.
[13]  B. Stieglitz, A. C. Morris-Davies, M. G. Koliopoulos, E. Christodoulou, and K. Rittinger, “LUBAC synthesizes linear ubiquitin chains via a thioester intermediate,” EMBO Reports, vol. 13, no. 9, pp. 840–846, 2012.
[14]  V. K. Chaugule, L. Burchell, K. R. Barber et al., “Autoregulation of Parkin activity through its ubiquitin-like domain,” EMBO Journal, vol. 30, no. 14, pp. 2853–2867, 2011.
[15]  M. S. Goldberg, S. M. Fleming, J. J. Palacino et al., “Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons,” The Journal of Biological Chemistry, vol. 278, no. 44, pp. 43628–43635, 2003.
[16]  J. M. Itier, P. Ibá?ez, M. A. Mena et al., “Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse,” Human Molecular Genetics, vol. 12, no. 18, pp. 2277–2291, 2003.
[17]  R. Von Coelln, B. Thomas, J. M. Savitt et al., “Loss of locus coeruleus neurons and reduced startle in parkin null mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10744–10749, 2004.
[18]  Y. Kitao, Y. Imai, K. Ozawa et al., “Pael receptor induces death of dopaminergic neurons in the substantia nigra via endoplasmic reticulum stress and dopamine toxicity, which is enhanced under condition of parkin inactivation,” Human Molecular Genetics, vol. 16, no. 1, pp. 50–60, 2007.
[19]  J. C. Greene, A. J. Whitworth, I. Kuo, L. A. Andrews, M. B. Feany, and L. J. Pallanck, “Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4078–4083, 2003.
[20]  Y. Pesah, T. Pham, H. Burgess et al., “Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress,” Development, vol. 131, no. 9, pp. 2183–2194, 2004.
[21]  Y. Yang, S. Gehrke, Y. Imai et al., “Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10793–10798, 2006.
[22]  I. E. Clark, M. W. Dodson, C. Jiang et al., “Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin,” Nature, vol. 441, no. 7097, pp. 1162–1166, 2006.
[23]  J. Park, S. B. Lee, S. Lee et al., “Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin,” Nature, vol. 441, no. 7097, pp. 1157–1161, 2006.
[24]  A. C. Poole, R. E. Thomas, L. A. Andrews, H. M. McBride, A. J. Whitworth, and L. J. Pallanck, “The PINK1/Parkin pathway regulates mitochondrial morphology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1638–1643, 2008.
[25]  Y. Yang, Y. Ouyang, L. Yang et al., “Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 19, pp. 7070–7075, 2008.
[26]  H. Deng, M. W. Dodson, H. Huang, and M. Guo, “The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 38, pp. 14503–14508, 2008.
[27]  Y. Imai, T. Kanao, T. Sawada et al., “The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila,” PLoS Genetics, vol. 6, no. 12, Article ID e1001229, 2010.
[28]  W. Yu, Y. Sun, S. Guo, and B. Lu, “The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons,” Human Molecular Genetics, vol. 20, no. 16, pp. 3227–3240, 2011.
[29]  D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, “Parkin is recruited selectively to impaired mitochondria and promotes their autophagy,” Journal of Cell Biology, vol. 183, no. 5, pp. 795–803, 2008.
[30]  J. Y. Lee, Y. Nagano, J. P. Taylor, K. L. Lim, and T. P. Yao, “Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy,” Journal of Cell Biology, vol. 189, no. 4, pp. 671–679, 2010.
[31]  J. A. Olzmann, A. Li, M. V. Chudaev et al., “Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6,” Journal of Cell Biology, vol. 178, no. 6, pp. 1025–1038, 2007.
[32]  N. C. Chan, A. M. Salazar, A. H. Pham et al., “Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy,” Human Molecular Genetics, vol. 20, no. 9, pp. 1726–1737, 2011.
[33]  S. Geisler, K. M. Holmstr?m, D. Skujat et al., “PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1,” Nature Cell Biology, vol. 12, no. 2, pp. 119–131, 2010.
[34]  K. Okatsu, K. Saisho, M. Shimanuki et al., “P62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria,” Genes to Cells, vol. 15, no. 8, pp. 887–900, 2010.
[35]  D. P. Narendra, L. A. Kane, D. N. Hauser, I. M. Fearnley, and R. J. Youle, “p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both,” Autophagy, vol. 6, no. 8, pp. 1090–1106, 2010.
[36]  Y. Saeki, T. Kudo, T. Sone et al., “Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome,” EMBO Journal, vol. 28, no. 4, pp. 359–371, 2009.
[37]  M. Komatsu, S. Waguri, M. Koike et al., “Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice,” Cell, vol. 131, no. 6, pp. 1149–1163, 2007.
[38]  U. B. Pandey, Z. Nie, Y. Batlevi et al., “HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS,” Nature, vol. 447, no. 7146, pp. 859–863, 2007.
[39]  C. van Humbeeck, T. Cornelissen, H. Hofkens et al., “Parkin interacts with ambra1 to induce mitophagy,” Journal of Neuroscience, vol. 31, no. 28, pp. 10249–10261, 2011.
[40]  Y. Li, O. W. Wan, W. Xie, and K. K. Chung, “p32 regulates mitochondrial morphology and dynamics through parkin,” Neuroscience, vol. 199, pp. 346–358, 2011.
[41]  V. Fogal, A. D. Richardson, P. P. Karmali, I. E. Scheffler, J. W. Smith, and E. Ruoslahti, “Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation,” Molecular and Cellular Biology, vol. 30, no. 6, pp. 1303–1318, 2010.
[42]  V. A. Hristova, S. A. Beasley, R. J. Rylett, and G. S. Shaw, “Identification of a novel Zn2+ -binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin,” The Journal of Biological Chemistry, vol. 284, no. 22, pp. 14978–14986, 2009.
[43]  C. Fernandes and Y. Rao, “Genome-wide screen for modifiers of Parkinson's disease genes in Drosophila,” Molecular Brain, vol. 4, no. 1, article 17, 2011.
[44]  T. Kanki, K. Wang, Y. Cao, M. Baba, and D. J. Klionsky, “Atg32 is a mitochondrial protein that confers selectivity during mitophagy,” Developmental Cell, vol. 17, no. 1, pp. 98–109, 2009.
[45]  K. Okamoto, N. Kondo-Okamoto, and Y. Ohsumi, “Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy,” Developmental Cell, vol. 17, no. 1, pp. 87–97, 2009.
[46]  G. Chinnadurai, S. Vijayalingam, and S. B. Gibson, “BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions,” Oncogene, vol. 27, no. 1, pp. S114–S127, 2008.
[47]  A. Diwan, S. J. Matkovich, Q. Yuan et al., “Endoplasmic reticulum-mitochondria crosstalk in NIX-mediated murine cell death,” Journal of Clinical Investigation, vol. 119, no. 1, pp. 203–212, 2009.
[48]  K. Fujimoto, E. L. Ford, H. Tran et al., “Loss of Nix in Pdx1-deficient mice prevents apoptotic and necrotic β cell death and diabetes,” Journal of Clinical Investigation, vol. 120, no. 11, pp. 4031–4039, 2010.
[49]  H. Sandoval, P. Thiagarajan, S. K. Dasgupta et al., “Essential role for Nix in autophagic maturation of erythroid cells,” Nature, vol. 454, no. 7201, pp. 232–235, 2008.
[50]  I. Novak, V. Kirkin, D. G. McEwan et al., “Nix is a selective autophagy receptor for mitochondrial clearance,” EMBO Reports, vol. 11, no. 1, pp. 45–51, 2010.
[51]  W. X. Ding, H. M. Ni, M. Li et al., “Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming,” The Journal of Biological Chemistry, vol. 285, no. 36, pp. 27879–27890, 2010.
[52]  R. L. Schweers, J. Zhang, M. S. Randall et al., “NIX is required for programmed mitochondrial clearance during reticulocyte maturation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19500–19505, 2007.
[53]  N. Kitamura, Y. Nakamura, Y. Miyamoto et al., “Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria,” PLoS ONE, vol. 6, no. 1, Article ID e16060, 2011.
[54]  Y. Miyamoto, N. Kitamura, Y. Nakamura et al., “Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control,” PLoS ONE, vol. 6, no. 1, Article ID e16054, 2011.
[55]  C. Vives-Bauza, C. Zhou, Y. Huang et al., “PINK1-dependent recruitment of Parkin to mitochondria in mitophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 378–383, 2010.
[56]  S. Kawajiri, S. Saiki, S. Sato et al., “PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy,” FEBS Letters, vol. 584, no. 6, pp. 1073–1079, 2010.
[57]  N. Matsuda, S. Sato, K. Shiba et al., “PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy,” Journal of Cell Biology, vol. 189, no. 2, pp. 211–221, 2010.
[58]  D. P. Narendra, S. M. Jin, A. Tanaka et al., “PINK1 is selectively stabilized on impaired mitochondria to activate Parkin,” PLoS Biology, vol. 8, no. 1, Article ID e1000298, 2010.
[59]  E. Ziviani, R. N. Tao, and A. J. Whitworth, “Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5018–5023, 2010.
[60]  P. Seibler, J. Graziotto, H. Jeong, F. Simunovic, C. Klein, and D. Krainc, “Mitochondrial parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells,” Journal of Neuroscience, vol. 31, no. 16, pp. 5970–5976, 2011.
[61]  A. Tanaka, M. M. Cleland, S. Xu et al., “Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin,” Journal of Cell Biology, vol. 191, no. 7, pp. 1367–1380, 2010.
[62]  M. E. Gegg, J. M. Cooper, K. Y. Chau, M. Rojo, A. H. V. Schapira, and J. W. Taanman, “Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy,” Human Molecular Genetics, vol. 19, no. 24, pp. 4861–4870, 2010.
[63]  H. Wang, P. Song, L. Du et al., “Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease,” The Journal of Biological Chemistry, vol. 286, no. 13, pp. 11649–11658, 2011.
[64]  D. Chen, F. Gao, B. Li et al., “Parkin mono-ubiquitinates Bcl-2 and regulates autophagy,” The Journal of Biological Chemistry, vol. 285, no. 49, pp. 38214–38223, 2010.
[65]  A. C. Poole, R. E. Thomas, S. Yu, E. S. Vincow, and L. Pallanck, “The mitochondrial fusion-promoting factor mitofusin is a substrate of the PINK1/parkin pathway,” PLoS ONE, vol. 5, no. 4, Article ID e10054, 2010.
[66]  M. Unoki and Y. Nakamura, “Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway,” Oncogene, vol. 20, no. 33, pp. 4457–4465, 2001.
[67]  Y. Mei, Y. Zhang, K. Yamamoto, W. Xie, T. W. Mak, and H. You, “FOXO3a-dependent regulation of Pink1 (Park6) mediates survival signaling in response to cytokine deprivation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 13, pp. 5153–5158, 2009.
[68]  A. J. Whitworth, J. R. Lee, V. M. W. Ho, R. Flick, R. Chowdhury, and G. A. McQuibban, “Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin,” DMM Disease Models and Mechanisms, vol. 1, no. 2-3, pp. 168–174, 2008.
[69]  E. Deas, H. Plun-Favreau, S. Gandhi et al., “PINK1 cleavage at position A103 by the mitochondrial protease PARL,” Human Molecular Genetics, vol. 20, no. 5, pp. 867–879, 2011.
[70]  S. M. Jin, M. Lazarou, C. Wang, L. A. Kane, D. P. Narendra, and R. J. Youle, “Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL,” Journal of Cell Biology, vol. 191, no. 5, pp. 933–942, 2010.
[71]  C. Meissner, H. Lorenz, A. Weihofen, D. J. Selkoe, and M. K. Lemberg, “The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking,” Journal of Neurochemistry, vol. 117, no. 5, pp. 856–867, 2011.
[72]  G. Shi, J. R. Lee, D. A. Grimes et al., “Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease,” Human Molecular Genetics, vol. 20, no. 10, Article ID ddr077, pp. 1966–1974, 2011.
[73]  M. Lazarou, S. M. Jin, L. A. Kane, and R. J. Youle, “Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin,” Developmental Cell, vol. 22, no. 2, pp. 320–333, 2012.
[74]  C. Zhou, Y. Huang, Y. Shao et al., “The kinase domain of mitochondrial PINK1 faces the cytoplasm,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 33, pp. 12022–12027, 2008.
[75]  K. Okatsu, T. Oka, M. Iguchi, et al., “PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria,” Nature Communications, vol. 3, Article ID 1016, 2012.
[76]  K. Shiba-Fukushima, Y. Imai, S. Yoshida, et al., “PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin: an initial step of mitophagy,” in Proceedings of the Meeting of Brain Environment supported by Grant-in-Aid for Scientific Research on Innovative Areas, Sendai, Japan, July 2012.
[77]  C. Kondapalli, A. Kazlauskaite, N. Zhang, et al., “PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65,” Open Biology, vol. 2, no. 5, Article ID 120080, 2012.
[78]  H. Q. Wang, Y. Imai, A. Kataoka, and R. Takahashi, “Cell type-specific upregulation of parkin in response to ER stress,” Antioxidants and Redox Signaling, vol. 9, no. 5, pp. 533–542, 2007.
[79]  Y. Imai, M. Soda, S. Hatakeyama et al., “CHIP is associated with Parkin, a gene responsible for familial Parkinson's Disease, and enhances its ubiquitin ligase activity,” Molecular Cell, vol. 10, no. 1, pp. 55–67, 2002.
[80]  Y. Imai, M. Soda, H. Inoue, N. Hattori, Y. Mizuno, and R. Takahashi, “An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin,” Cell, vol. 105, no. 7, pp. 891–902, 2001.
[81]  L. Bouman, A. Schlierf, A. K. Lutz et al., “Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress,” Cell Death and Differentiation, vol. 18, no. 5, pp. 769–782, 2011.
[82]  Y. Higashi, M. Asanuma, I. Miyazaki, N. Hattori, Y. Mizuno, and N. Ogawa, “Parkin attenuates manganese-induced dopaminergic cell death,” Journal of Neurochemistry, vol. 89, no. 6, pp. 1490–1497, 2004.
[83]  Y. X. Yang, M. M. K. Muqit, and D. S. Latchman, “Induction of parkin expression in the presence of oxidative stress,” European Journal of Neuroscience, vol. 24, no. 5, pp. 1366–1372, 2006.
[84]  C. Zhang, M. Lin, R. Wu, et al., “Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect,” Proceedings of the National Academy of Sciences United States of America, vol. 108, no. 39, pp. 16259–16264, 2011.
[85]  C. A. da Costa, C. Sunyach, E. Giaime et al., “Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease,” Nature Cell Biology, vol. 11, no. 11, pp. 1370–1375, 2009.
[86]  S. R. Denison, G. Callahan, N. A. Becker, L. A. Phillips, and D. I. Smith, “Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer,” Genes Chromosomes and Cancer, vol. 38, no. 1, pp. 40–52, 2003.
[87]  S. R. Denison, F. Wang, N. A. Becker et al., “Alterations in the common fragile site gene Parkin in ovarian and other cancers,” Oncogene, vol. 22, no. 51, pp. 8370–8378, 2003.
[88]  S. J. Mehdi, A. Ali, and M. M. A. Rizvi, “Parkin gene alterations in ovarian carcinoma from northern indian population,” Pathology and Oncology Research, vol. 17, no. 3, pp. 579–586, 2011.
[89]  A. Letessier, S. Garrido-Urbani, C. Ginestier et al., “Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer,” Oncogene, vol. 26, no. 2, pp. 298–307, 2007.
[90]  X. Agirre, J. Román-Gómez, I. Vázquez et al., “Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia,” International Journal of Cancer, vol. 118, no. 8, pp. 1945–1953, 2006.
[91]  K. Ikeuchi, H. Marusawa, M. Fujiwara et al., “Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced Parkin in human colorectal cancers,” International Journal of Cancer, vol. 125, no. 9, pp. 2029–2035, 2009.
[92]  M. C. Picchio, E. S. Martin, R. Cesari et al., “Alterations of the tumor suppressor gene parkin in non-small cell lung cancer,” Clinical Cancer Research, vol. 10, no. 8, pp. 2720–2724, 2004.
[93]  S. Veeriah, B. S. Taylor, S. Meng et al., “Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies,” Nature Genetics, vol. 42, no. 1, pp. 77–82, 2010.
[94]  R. Cesari, E. S. Martin, G. A. Calin et al., “Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25–q27,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5956–5961, 2003.
[95]  M. Fujiwara, H. Marusawa, H. Q. Wang et al., “Parkin as a tumor suppressor gene for hepatocellular carcinoma,” Oncogene, vol. 27, no. 46, pp. 6002–6011, 2008.
[96]  F. Wang, S. Denison, J. P. Lai et al., “Parkin gene alterations in hepatocellular carcinoma,” Genes Chromosomes and Cancer, vol. 40, no. 2, pp. 85–96, 2004.
[97]  A. Fransson, A. Ruusala, and P. Aspenstr?m, “Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis,” The Journal of Biological Chemistry, vol. 278, no. 8, pp. 6495–6502, 2003.
[98]  L. Giot, J. S. Bader, C. Brouwer et al., “A protein interaction map of Drosophila melanogaster,” Science, vol. 302, no. 5651, pp. 1727–1736, 2003.
[99]  X. Guo, G. T. Macleod, A. Wellington et al., “The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses,” Neuron, vol. 47, no. 3, pp. 379–393, 2005.
[100]  E. E. Glater, L. J. Megeath, R. S. Stowers, and T. L. Schwarz, “Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent,” Journal of Cell Biology, vol. 173, no. 4, pp. 545–557, 2006.
[101]  A. Weihofen, K. J. Thomas, B. L. Ostaszewski, M. R. Cookson, and D. J. Selkoe, “Pink1 forms a multiprotein complex with miro and milton, linking Pink1 function to mitochondrial trafficking,” Biochemistry, vol. 48, no. 9, pp. 2045–2052, 2009.
[102]  S. Liu, T. Sawada, S. Lee, et al., “Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria,” PLoS Genet, vol. 8, no. 3, Article ID e1002537, 2012.
[103]  X. Wang, D. Winter, G. Ashrafi, et al., “PINK1 and parkin target miro for phosphorylation and degradation to arrest mitochondrial motility,” Cell, vol. 147, no. 4, pp. 893–906, 2011.
[104]  V. Bonifati, P. Rizzu, M. J. Van Baren et al., “Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism,” Science, vol. 299, no. 5604, pp. 256–259, 2003.
[105]  T. Taira, Y. Saito, T. Niki, S. M. M. Iguchi-Ariga, K. Takahashi, and H. Ariga, “DJ-1 has a role in antioxidative stress to prevent cell death,” EMBO Reports, vol. 5, no. 2, pp. 213–218, 2004.
[106]  F. M. Menzies, S. C. Yenisetti, and K. T. Min, “Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress,” Current Biology, vol. 15, no. 17, pp. 1578–1582, 2005.
[107]  M. Meulener, A. J. Whitworth, C. E. Armstrong-Gold et al., “Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease,” Current Biology, vol. 15, no. 17, pp. 1572–1577, 2005.
[108]  Y. Yang, S. Gehrke, M. E. Haque et al., “Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 38, pp. 13670–13675, 2005.
[109]  C. Martinat, S. Shendelman, A. Jonason et al., “Sensitivity to oxidative stress in DJ-1-deficient dopamine neurons: an ES- derived cell model of primary Parkinsonism,” PLoS Biology, vol. 2, no. 11, 2004.
[110]  I. Irrcher, H. Aleyasin, E. L. Seifert et al., “Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics,” Human Molecular Genetics, vol. 19, no. 19, pp. 3734–3746, 2010.
[111]  K. J. Thomas, M. K. McCoy, J. Blackinton et al., “DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy,” Human Molecular Genetics, vol. 20, no. 1, pp. 40–50, 2011.
[112]  L. Y. Hao, B. I. Giasson, and N. M. Bonini, “DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 21, pp. 9747–9752, 2010.
[113]  T. Kitada, Y. Tong, C. A. Gautier, and J. Shen, “Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice,” Journal of Neurochemistry, vol. 111, no. 3, pp. 696–702, 2009.
[114]  A. P. Joselin, S. J. Hewitt, S. M. Callaghan, et al., “ROS dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons,” Human Molecular Genetics, vol. 21, no. 22, pp. 4888–4903, 2012.
[115]  A. J. Whitworth, D. A. Theodore, J. C. Greene, H. Bene?, P. D. Wes, and L. J. Pallanck, “Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 22, pp. 8024–8029, 2005.
[116]  Y. Suzuki, Y. Imai, H. Nakayama, K. Takahashi, K. Takio, and R. Takahashi, “A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death,” Molecular Cell, vol. 8, no. 3, pp. 613–621, 2001.
[117]  K. Sekine, Y. Hao, Y. Suzuki, R. Takahashi, T. Tsuruo, and M. Naito, “HtrA2 cleaves Apollon and induces cell death by IAP-binding motif in Apollon-deficient cells,” Biochemical and Biophysical Research Communications, vol. 330, no. 1, pp. 279–285, 2005.
[118]  L. M. Martins, I. Iaccarino, T. Tenev et al., “The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif,” The Journal of Biological Chemistry, vol. 277, no. 1, pp. 439–444, 2002.
[119]  G. van Loo, M. van Gurp, B. Depuydt et al., “The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity,” Cell Death and Differentiation, vol. 9, no. 1, pp. 20–26, 2002.
[120]  K. M. Strauss, L. M. Martins, H. Plun-Favreau et al., “Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease,” Human Molecular Genetics, vol. 14, no. 15, pp. 2099–2111, 2005.
[121]  V. Bogaerts, K. Nuytemans, J. Reumers et al., “Genetic variability in the mitochondrial serine protease HTRA2 contributes to risk for Parkinson disease,” Human Mutation, vol. 29, no. 6, pp. 832–840, 2008.
[122]  J. Simón-Sánchez and A. B. Singleton, “Sequencing analysis of OMI/HTRA2 shows previously reported pathogenic mutations in neurologically normal controls,” Human Molecular Genetics, vol. 17, no. 13, pp. 1988–1993, 2008.
[123]  J. M. Jones, P. Datta, S. M. Srinivasula et al., “Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice,” Nature, vol. 425, no. 6959, pp. 721–727, 2003.
[124]  H. Plun-Favreau, K. Klupsch, N. Moisoi et al., “The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1,” Nature Cell Biology, vol. 9, no. 11, pp. 1243–1252, 2007.
[125]  H. M. Park, G. Y. Kim, M. K. Nam et al., “The serine protease HtrA2/Omi cleaves Parkin and irreversibly inactivates its E3 ubiquitin ligase activity,” Biochemical and Biophysical Research Communications, vol. 387, no. 3, pp. 537–542, 2009.
[126]  J. Yun, J. H. Cao, M. W. Dodson et al., “Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the pink1/parkin pathway in vivo,” Journal of Neuroscience, vol. 28, no. 53, pp. 14500–14510, 2008.
[127]  T. Yoshida, T. Mizuta, and S. Shimizu, “Neurodegeneration in mnd2 mutant mice is not prevented by parkin transgene,” Biochemical and Biophysical Research Communications, vol. 402, no. 4, pp. 676–679, 2010.
[128]  D. F. Suen, D. P. Narendra, A. Tanaka, G. Manfredi, and R. J. Youle, “Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 26, pp. 11835–11840, 2010.
[129]  A. Rakovic, A. Grünewald, J. Kottwitz et al., “Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts,” PLoS ONE, vol. 6, no. 3, Article ID e16746, 2011.
[130]  S. Gispert, F. Ricciardi, A. Kurz et al., “Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration,” PLoS ONE, vol. 4, no. 6, Article ID e5777, 2009.
[131]  C. A. Gautier, T. Kitada, and J. Shen, “Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11364–11369, 2008.
[132]  S. Schmidt, B. Linnartz, S. Mendritzki et al., “Genetic mouse models for Parkinson's disease display severe pathology in glial cell mitochondria,” Human Molecular Genetics, vol. 20, no. 6, pp. 1197–1211, 2011.
[133]  F. Billia, L. Hauck, F. Konecny, V. Rao, J. Shen, and T. W. Mak, “PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 23, pp. 9572–9577, 2011.
[134]  C. Huang, A. M. Andres, E. P. Ratliff, G. Hernandez, P. Lee, and R. A. Gottlieb, “Preconditioning involves selective mitophagy mediated by parkin and p62/SQSTM1,” PLoS ONE, vol. 6, no. 6, Article ID e20975, 2011.
[135]  T. A. Zesiewicz, J. A. Strom, A. R. Borenstein et al., “Heart failure in Parkinson's disease: analysis of the United States medicare current beneficiary survey,” Parkinsonism and Related Disorders, vol. 10, no. 7, pp. 417–420, 2004.
[136]  A. Anvret, C. Ran, M. Westerlund, et al., “Genetic screening of the mitochondrial Rho gtpases MIRO1 and MIRO2 in Parkinson's disease,” Open Neurology Journal, vol. 6, pp. 1–5, 2012.
[137]  A. H. Pham, S. Meng, Q. N. Chu, and D. C. Chan, “Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit,” Human Molecular Genetics, vol. 21, no. 22, pp. 4827–4835, 2012.
[138]  S. Lee, F. H. Sterky, A. Mourier, et al., “Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons,” Human Molecular Genetics, vol. 21, no. 22, pp. 4827–4835, 2012.
[139]  K. Verhoeven, K. G. Claeys, S. Züchner et al., “MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2,” Brain, vol. 129, no. 8, pp. 2093–2102, 2006.
[140]  V. H. Lawson, B. V. Graham, and K. M. Flanigan, “Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene,” Neurology, vol. 65, no. 2, pp. 197–204, 2005.
[141]  S. Züchner, I. V. Mersiyanova, M. Muglia et al., “Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A,” Nature Genetics, vol. 36, no. 5, pp. 449–451, 2004.
[142]  A. Misko, S. Jiang, I. Wegorzewska, J. Milbrandt, and R. H. Baloh, “Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex,” Journal of Neuroscience, vol. 30, no. 12, pp. 4232–4240, 2010.
[143]  J. J. Palacino, D. Sagi, M. S. Goldberg et al., “Mitochondrial dysfunction and oxidative damage in parkin-deficient mice,” The Journal of Biological Chemistry, vol. 279, no. 18, pp. 18614–18622, 2004.
[144]  V. A. Morais, P. Verstreken, A. Roethig et al., “Parkinson's disease mutations in PINK1 result in decreased complex I activity and deficient synaptic function,” EMBO Molecular Medicine, vol. 1, no. 2, pp. 99–111, 2009.
[145]  L. Flinn, H. Mortiboys, K. Volkmann, R. W. Kster, P. W. Ingham, and O. Bandmann, “Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio),” Brain, vol. 132, no. 6, pp. 1613–1623, 2009.
[146]  H. Mortiboys, K. J. Thomas, W. J. H. Koopman et al., “Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts,” Annals of Neurology, vol. 64, no. 5, pp. 555–565, 2008.
[147]  T. Amo, S. Sato, S. Saiki et al., “Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects,” Neurobiology of Disease, vol. 41, no. 1, pp. 111–118, 2011.
[148]  S. Gandhi, A. Wood-Kaczmar, Z. Yao et al., “PINK1-Associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death,” Molecular Cell, vol. 33, no. 5, pp. 627–638, 2009.
[149]  S. Vilain, G. Esposito, D. Haddad, et al., “The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants,” PLoS Genet, vol. 8, no. 1, Article ID e1002456, 2012.
[150]  M. Vos, G. Esposito, J. N. Edirisinghe, et al., “Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency,” Science, vol. 336, no. 6086, pp. 1306–1310, 2012.
[151]  B. M. Zid, A. N. Rogers, S. D. Katewa et al., “4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila,” Cell, vol. 139, no. 1, pp. 149–160, 2009.
[152]  S. Liu and B. Lu, “Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster,” PLoS Genetics, vol. 6, no. 12, p. e1001237, 2010.
[153]  L. S. Tain, H. Mortiboys, R. N. Tao, E. Ziviani, O. Bandmann, and A. J. Whitworth, “Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss,” Nature Neuroscience, vol. 12, no. 9, pp. 1129–1135, 2009.
[154]  J. H. Shin, H. S. Ko, H. Kang et al., “PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in parkinson's disease,” Cell, vol. 144, no. 5, pp. 689–702, 2011.
[155]  C. Pacelli, D. De Rasmo, A. Signorile et al., “Mitochondrial defect and PGC-1α dysfunction in parkin-associated familial Parkinson's disease,” Biochimica et Biophysica Acta, vol. 1812, no. 8, pp. 1041–1053, 2011.
[156]  A. W. Greene, K. Grenier, M. A. Aguileta, et al., “Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment,” EMBO Reports, vol. 13, no. 4, pp. 378–385, 2012.
[157]  J. M. Bravo-San Pedro, R. Gomez-Sanchez, M. Niso-Santano, et al., “The MAPK1/3 pathway is essential for the deregulation of autophagy observed in G2019S LRRK2 mutant fibroblasts,” Autophagy, vol. 8, no. 10, pp. 1537–1539, 2012.
[158]  J. M. Bravo-San Pedro, M. Niso-Santano, R. Gomez-Sanchez, et al., “The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway,” Cellular and Molecular Life Sciences In press.
[159]  L. G. Friedman, M. L. Lachenmayer, J. Wang, et al., “Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain,” Journal of Neuroscience, vol. 32, no. 22, pp. 7585–7593, 2012.
[160]  P. Gomez-Suaga and S. Hilfiker, “LRRK2 as a modulator of lysosomal calcium homeostasis with downstream effects on autophagy,” Autophagy, vol. 8, no. 4, pp. 692–693, 2012.
[161]  E. D. Plowey, S. J. Cherra, Y. J. Liu, and C. T. Chu, “Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells,” Journal of Neurochemistry, vol. 105, no. 3, pp. 1048–1056, 2008.
[162]  J. Alegre-Abarrategui, H. Christian, M. M. P. Lufino et al., “LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model,” Human Molecular Genetics, vol. 18, no. 21, pp. 4022–4034, 2009.
[163]  J. P. Covy, E. A. Waxman, and B. I. Giasson, “Characterization of cellular protective effects of ATP13A2/PARK9 expression and alterations resulting from pathogenic mutants,” Journal of Neuroscience Research, vol. 90, no. 12, pp. 2306–2316, 2012.
[164]  A. Ramirez, A. Heimbach, J. Gründemann et al., “Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase,” Nature Genetics, vol. 38, no. 10, pp. 1184–1191, 2006.
[165]  M. Usenovic, E. Tresse, J. R. Mazzulli, J. P. Taylor, and D. Krainc, “Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity,” Journal of Neuroscience, vol. 32, no. 12, pp. 4240–4246, 2012.
[166]  B. Dehay, A. Ramirez, M. Martinez-Vicente, et al., “Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration,” Proceedings of the National Academy of Sciences United States of America, vol. 109, no. 24, pp. 9611–9616, 2012.
[167]  N. Moisoi, K. Klupsch, V. Fedele et al., “Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response,” Cell Death and Differentiation, vol. 16, no. 3, pp. 449–464, 2009.
[168]  B. Li, Q. Hu, H. Wang et al., “Omi/HtrA2 is a positive regulator of autophagy that facilitates the degradation of mutant proteins involved in neurodegenerative diseases,” Cell Death and Differentiation, vol. 17, no. 11, pp. 1773–1784, 2010.
[169]  A. D. Fonzo, M. C. J. Dekker, P. Montagna et al., “FBXO7 mutations cause autosomal recessive, early-onset parkinsonian- pyramidal syndrome,” Neurology, vol. 72, no. 3, pp. 240–245, 2009.
[170]  T. Zhao, E. de Graaff, G. J. Breedveld et al., “Loss of nuclear activity of the FBXO7 protein in patients with parkinsonian-pyramidal syndrome (PARK15),” PLoS ONE, vol. 6, no. 2, Article ID e16983, 2011.
[171]  R. Krüger, W. Kuhn, T. Müller et al., “Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease,” Nature Genetics, vol. 18, no. 2, pp. 106–108, 1998.
[172]  M. G. Spillantini, M. L. Schmidt, V. M. Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Lewy bodies,” Nature, vol. 388, no. 6645, pp. 839–840, 1997.
[173]  M. H. Polymeropoulos, C. Lavedan, E. Leroy et al., “Mutation in the α-synuclein gene identified in families with Parkinson's disease,” Science, vol. 276, no. 5321, pp. 2045–2047, 1997.
[174]  K. Arima, S. Hirai, N. Sunohara et al., “Cellular co-localization of phosphorylated tau- and NACP/α-synuclein- epitopes in Lewy bodies in sporadic Parkinson's disease and in dementia with Lewy bodies,” Brain Research, vol. 843, no. 1-2, pp. 53–61, 1999.
[175]  P. T. Kotzbauer, B. I. Giasson, A. V. Kravitz et al., “Fibrillization of α-synuclein and tau in familial Parkinson's disease caused by the A53T α-synuclein mutation,” Experimental Neurology, vol. 187, no. 2, pp. 279–288, 2004.
[176]  T. Duka, V. Duka, J. N. Joyce, and A. Sidhu, “α-Synuclein contributes to GSK-3β-catalyzed Tau phosphorylation in Parkinson's disease models,” FASEB Journal, vol. 23, no. 9, pp. 2820–2830, 2009.
[177]  M. Hong, M. Hong, V. Zhukareva et al., “Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17,” Science, vol. 282, no. 5395, pp. 1914–1917, 1998.
[178]  M. Hutton, C. L. Lendon, P. Rizzu et al., “Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17,” Nature, vol. 393, no. 6686, pp. 702–705, 1998.
[179]  W. Satake, Y. Nakabayashi, I. Mizuta et al., “Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease,” Nature Genetics, vol. 41, no. 12, pp. 1303–1307, 2009.
[180]  J. Simon-Sanchez, C. Schulte, J. M. Bras, et al., “Genome-wide association study reveals genetic risk underlying Parkinson's disease,” Nature Genetics, vol. 41, no. 12, pp. 1308–1312, 2009.
[181]  K. Takeda, T. Yoshida, S. Kikuchi et al., “Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 8, pp. 3540–3545, 2010.
[182]  I. Pimenta de Castro, A. C. Costa, D. Lam, et al., “Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster,” Cell Death & Differentiation, vol. 19, no. 8, pp. 1308–1316, 2012.
[183]  H. Meyer, M. Bug, and S. Bremer, “Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system,” Nature Cell Biology, vol. 14, no. 2, pp. 117–123, 2012.
[184]  S. R. Yoshii, C. Kishi, N. Ishihara, and N. Mizushima, “Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane,” The Journal of Biological Chemistry, vol. 286, no. 22, pp. 19630–19640, 2011.


comments powered by Disqus

Contact Us


微信:OALib Journal