全部 标题 作者
关键词 摘要


Evaluation of the Pericardium with CT and MR

DOI: 10.1155/2014/174908

Full-Text   Cite this paper   Add to My Lib

Abstract:

The pericardium plays an important role in optimizing cardiac motion and chamber pressures and serves as a barrier to pathology. In addition to pericardial anatomy and function, this review article covers a variety of pericardial conditions, with mention of potential pitfalls encountered during interpretation of diagnostic imaging. Normal and abnormal appearance of pericardium on CT and MR imaging is emphasized, including dynamic imaging correlates of pericardial pathophysiology. 1. Introduction More than just a tissue, the pericardium is an organ with specific functions and an embryologic origin distinct from the heart. Whereas the heart is derived from splanchnic mesoderm, the pericardium is derived from somatic mesoderm [1–3]. Long-recognized functions of the pericardium include anchoring the heart in the mediastinum, minimizing the friction of cardiac motion, and serving as a barrier from infection and neoplasm [4]. More recently, the pericardium has been described as an intracardiac pressure modulator, limiting acute distention of any one cardiac chamber and preserving myofibril function by preventing sarcomere overlengthening [5, 6]. As with other organs, the pericardium is subject to various disease processes, include inflammatory, infectious, fibrotic, metabolic, and neoplastic. Imaging of these processes has advanced significantly in the past decade, with the refinement of multidetector CT and high-field-strength MRI. CT and MR permit visualization of the entire pericardium by virtue of three-dimensional acquisition and multiplanar imaging, respectively, and provide better assessment of surrounding structures than the prior standard of echocardiography [7]. In addition, MR techniques allow the evaluation of pericardial function, particularly as it relates to the problem of differentiating myocardial restriction from pericardial constriction, the latter being surgically treatable [8]. 2. Anatomic Considerations As with the other serosal surfaces of the body, the pericardium has parietal and visceral layers. The parietal layer of pericardium is several times thicker than the visceral pericardium [4]. The normal combined pericardial thickness is 2?mm or less (Figures 1(a) and 1(b)). 2-3?mm is considered equivocal, whereas 4?mm thickness at any point is abnormal [9, 10]. The normal pericardial stabilizers include the great vessel reflections and several ligaments (pericardial-sternal, pericardial-vertebral, and pericardial-diaphragmatic) (Figure 1(c)) [4]. Figure 1: Normal pericardium. (a) Gated contrast-enhanced axial CT and (b) axial double

References

[1]  B. M. Carlson, Human Embryology and Developmental Biology, Mosby, Philadelphia, Pa, USA, 4th edition, 2009.
[2]  B. Van Wijk and M. van den Hoff, “Epicardium and myocardium originate from a common cardiogenic precursor pool,” Trends in Cardiovascular Medicine, vol. 20, no. 1, pp. 1–7, 2010.
[3]  J. A. Epstein, “Cardiac development and implications for heart disease,” The New England Journal of Medicine, vol. 363, no. 17, pp. 1638–1647, 2010.
[4]  S. J. Hutchison, Pericardial Diseases: Clinical Diagnostic Imaging Atlas, Elsevier, Amsterdam, The Netherlands, 2009.
[5]  S. J. Lavine, C. A. Campbell, R. A. Kloner, and S. J. Gunther, “Diastolic filling in acute left ventricular dysfunction: role of the pericardium,” Journal of the American College of Cardiology, vol. 12, no. 5, pp. 1326–1333, 1988.
[6]  S. I. Reynertson, S. N. Konstadt, E. K. Louie, L. Segil, T. L. K. Rao, and P. J. Scanlon, “Alterations in transesophageal pulsed Doppler indexes of filling of the left ventricle after pericardiotomy,” Journal of the American College of Cardiology, vol. 18, no. 7, pp. 1655–1660, 1991.
[7]  W. G. Hundley, D. A. Bluemke, J. P. Finn et al., “ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance,” Journal of the American College of Cardiology, vol. 55, no. 23, pp. 2614–2662, 2010.
[8]  Z. J. Wang, G. P. Reddy, M. B. Gotway, B. M. Yeh, S. W. Hetts, and C. B. Higgins, “CT and MR imaging of pericardial disease,” Radiographics, vol. 23, pp. S167–S180, 2003.
[9]  R. K. Bull, P. D. Edwards, and A. K. Dixon, “CT dimensions of the normal pericardium,” British Journal of Radiology, vol. 71, pp. 923–925, 1998.
[10]  I. Shagetai, D. Tscholakoff, and C. B. Higgins, “MRI of the abnormal pericardium,” American Journal of Roentgenology, vol. 147, no. 2, pp. 245–252, 1986.
[11]  L. S. Broderick, G. N. Brooks, and J. E. Kuhlman, “Anatomic pitfalls of the heart and pericardium,” Radiographics, vol. 25, no. 2, pp. 441–453, 2005.
[12]  M. T. Truong, J. J. Erasmus, G. W. Gladish et al., “Anatomy of pericardial recesses on multidetector CT: implications for oncologic imaging,” American Journal of Roentgenology, vol. 181, no. 4, pp. 1109–1113, 2003.
[13]  M. Levy-Ravetch, Y. H. Auh, and W. A. Rubenstein, “CT of the pericardial recesses,” American Journal of Roentgenology, vol. 144, no. 4, pp. 707–714, 1985.
[14]  M. J. Budoff, B. Lu, S. Mao et al., “Evaluation of fluid collection in the pericardial sinuses and recesses: noncontrast-enhanced electron beam tomography,” Investigative Radiology, vol. 35, no. 6, pp. 359–365, 2000.
[15]  R. C. Hendel, M. R. Patel, C. M. Kramer et al., “ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging,” Journal of the American College of Cardiology, vol. 48, no. 7, pp. 1475–1497.
[16]  D. Verhaert, R. S. Gabrie, D. Johnston, B. W. Lytle, M. Y. Desai, and A. L. Klein, “The role of multimodality imaging in the management of pericardial disease,” Circulation, vol. 3, no. 3, pp. 333–343, 2010.
[17]  K. Yared, A. L. Baggish, M. H. Picard, U. Hoffmann, and J. Hung, “Multimodality imaging of pericardial diseases,” Journal of the American College of Cardiology, vol. 3, no. 6, pp. 650–660, 2010.
[18]  S. Abbara and S. W. Miller, Cardiac Imaging : The Requisites, Radiology Requisites Series, Mosby, Philadelphia, Pa, USA, 2005.
[19]  J. S. Sun, K. J. Park, and D. K. Kang, “CT findings in patients with pericardial effusion: differentiation of malignant and benign disease,” American Journal of Roentgenology, vol. 194, no. 6, pp. W489–W494, 2010.
[20]  R. Rienmüller, R. Gr?ll, and M. J. Lipton, “CT and MR imaging of pericardial disease,” Radiologic Clinics of North America, vol. 42, no. 3, pp. 587–601, 2004.
[21]  R. Shabetai and E. Meaney, “Haemodynamics of cardiac restriction and tamponade,” British Heart Journal, vol. 37, no. 7, pp. 780–785, 1975.
[22]  M. Francone, S. Dymarkowski, M. Kalantzi, F. E. Rademakers, and J. Bogaert, “Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy,” European Radiology, vol. 16, no. 4, pp. 944–951, 2006.
[23]  C. S. Restrepo, D. F. Lemos, J. A. Lemos et al., “Imaging findings in cardiac tamponade with emphasis on CT,” RadioGraphics, vol. 27, no. 6, pp. 1595–1610, 2007.
[24]  R. A. Nishimura, “Constrictive pericarditis in the modern era: a diagnostic dilemma,” Heart, vol. 86, no. 6, pp. 619–623, 2001.
[25]  D. R. Talreja, W. D. Edwards, G. K. Danielson et al., “Constrictive pericarditis in 26 patients with histologically normal pericardial thickness,” Circulation, vol. 108, no. 15, pp. 1852–1857, 2003.
[26]  J. Bogaert, M. Centonze, R. Vanneste, and M. Francone, “Cardiac and pericardial abnormalities on chest computed tomography: what can we see?” Radiologia Medica, vol. 115, no. 2, pp. 175–190, 2010.
[27]  S. Kojima, N. Yamada, and Y. Goto, “Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging,” The New England Journal of Medicine, vol. 341, no. 5, pp. 373–374, 1999.
[28]  M. Francone, S. Dymarkowski, M. Kalantzi, and J. Bogaert, “Real-time cine MRI of ventricular motion: a novel approach to assess ventricular coupling,” Journal of Magnetic Resonance Imaging, vol. 21, no. 3, pp. 305–309, 2005.
[29]  J. F. Breen, “Imaging of the pericardium,” Journal of Thoracic Imaging, vol. 16, no. 1, pp. 47–54, 2001.
[30]  A. Kovanlikaya, L. P. Burke, M. D. Nelson, and J. Wood, “Characterizing chronic pericarditis using steady-state free-precession cine MR imaging,” American Journal of Roentgenology, vol. 179, no. 2, pp. 475–476, 2002.
[31]  F. Mookadam, S. E. Moustafa, Y. Sun et al., “Infectious pericarditis: an experience spanning a decade,” Acta Cardiologica, vol. 64, no. 3, pp. 297–302, 2009.
[32]  C. Comoglio, F. Sansone, L. Delsedime, A. Campanella, F. Ceresa, and M. Rinaldi, “Mesothelial cyst of the pericardium, absent on earlier computed tomography,” Texas Heart Institute Journal, vol. 37, no. 3, pp. 354–357, 2010.
[33]  W. J. Manning and D. J. Pennel, Cardiovascular Magnetic Resonance, Churchill-Livingston, Philadelphia, Pa, USA, 2002.
[34]  J. Vavalle, T. M. Bashore, and I. Klem, “Surprising finding of a primary pericardial mesothelioma,” The International Journal of Cardiovascular Imaging, vol. 26, no. 6, pp. 625–627, 2010.
[35]  P. Prakash, M. K. Kalra, J. R. Stone, J.-A. O. Shepard, and S. R. Digumarthy, “Imaging findings of pericardial metastasis on chest computed tomography,” Journal of Computer Assisted Tomography, vol. 34, no. 4, pp. 554–558, 2010.
[36]  M. L. Grebenc, D. C. M. L. Rosado, A. P. Burke, C. E. Green, and J. R. Galvin, “Primary cardiac and pericardial neoplasms: radiologic-pathologic correlation,” Radiographics, vol. 20, no. 4, pp. 1073–1103, 2000.
[37]  F. E. Johnson, M. K. Wolverson, M. Sundaram, and E. Heiberg, “Unsuspected malignant pericardial effusion causing cardiac tamponade: rapid diagnosis by computed tomography,” Chest, vol. 82, no. 4, pp. 501–503, 1982.
[38]  E. A. Maher, F. A. Shepherd, and D. J. R. Todd, “Pericardial sclerosis as the primary management of malignant pericardial effusion and cardiac tamponade,” Journal of Thoracic and Cardiovascular Surgery, vol. 112, no. 3, pp. 637–643, 1996.
[39]  T. Dosios, N. Theakos, D. Angouras, and P. Asimacopoulos, “Risk factors affecting the survival of patients with pericardial effusion submitted to subxiphoid pericardiostomy,” Chest, vol. 124, no. 1, pp. 242–246, 2003.
[40]  R. Moncada, M. N. Kotler, and R. J. Churchill, “Multimodality approach to pericardial imaging,” Cardiovascular Clinics, vol. 17, no. 1, pp. 409–411, 1986.
[41]  C. Chiles, P. K. Woodard, F. R. Gutierrez, and K. M. Link, “Metastatic involvement of the heart and pericardium: CT and MR imaging,” Radiographics, vol. 21, no. 2, pp. 439–449, 2001.
[42]  M. Imazio, B. M. Mayosi, A. Brucato et al., “Triage and management of pericardial effusion,” Journal of Cardiovascular Medicine, vol. 11, no. 12, pp. 928–935, 2010.

Full-Text

comments powered by Disqus