All Title Author
Keywords Abstract

NaCl Effects on In Vitro Germination and Growth of Some Senegalese Cowpea (Vigna unguiculata (L.) Walp.) Cultivars

DOI: 10.5402/2013/382417

Full-Text   Cite this paper   Add to My Lib


Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important grain legumes in sub-Saharian regions. It contributes to man food security by providing a protein-rich diet. However, its production is limited by abiotic stresses such as salinity. This study aims to evaluate the salt tolerance of 15 cowpea cultivars, at germination stage. The seed germination process consisted of sowing them in agarified water (8?g·L?1) supplemented with 6 different concentrations of NaCl (0, 10, 50, 100, 150, and 200?mM). Results highlighted that high salt concentrations drastically reduced germination and significantly delayed the process for all varieties. A cowpea varietal effect towards the salt tolerance was noticed. Genotypes Diongoma, 58-78, and 58-191 were more salt-tolerant cultivars while Mougne and Yacine were more salt-sensitive ones as confirmed in the three groups of the dendrogram. NaCl effects on the early vegetative growth of seedlings were assessed with a tolerant (58-191) and a susceptible (Yacine) cultivar. Morphological (length and dry biomass) and physiological (chlorophyll and proline contents) parameter measurements revealed a negative effect of high (NaCl). However, 58-191 was much more salt tolerant, and the chlorophyll and proline contents were higher than those of Yacine genotype at increasing salt concentrations. 1. Introduction Cowpea (Vigna unguiculata, (L.) Walp.) is a tropical herbaceous leguminous plant belonging to the Fabaceae family. This species is one of the most important grain legume crops in the Sub-saharian regions of Africa because several parts such as dry or fresh seeds (23–32% of protein and 64% of carbohydrate contains), the immature pods, and the leaves are used for human consumption. In addition, dry seeds, pods, and the hay are used for animal feeding during the dry season [1]. For this purpose, cowpea is a valuable source of income for farmers and grain traders in many African countries [2–4]. In Senegal, the economic importance of cowpea is increasing [5] as it is one of the essential crops for rural population diet [6]. Its cultivation is often associated with cereals such as millet, sorghum, and maize [7] due to its ability to establish a nitrogen-fixing symbiosis with Bradyrhizobium and/or mycorrhiza leading to soil fertility improvement [8]. The total cultivated area worldwide is estimated around 9.8 million?ha, with a total production of 3.9 million tons in 2004 [9]. Senegal is a major producer of cowpea in West Africa with an estimated area of 130,730?ha and an average production of 37,648 tons [10]. Salinity


[1]  C. E. Chinma, I. C. Alemede, and I. G. Emelife, “Physicochemical and functional properties of some Nigerian cowpea varieties,” Pakistan Journal of Nutrition, vol. 7, no. 1, pp. 186–190, 2008.
[2]  A. S. Langyintuo, J. Lowenberg-DeBoer, M. Faye et al., “Cowpea supply and demand in West and Central Africa,” Field Crops Research, vol. 82, no. 2-3, pp. 215–231, 2003.
[3]  M. P. Timko, J. D. Ehlers, and P. A. Roberts, “Cowpea,” in Pulses, Sugar and Tuber Crops, Genome Mapping and Molecular Breeding in Plants, C. Kole, Ed., vol. 3, pp. 49–67, Springer, Berlin, Germany, 2007.
[4]  M. P. Timko and B. B. Singh, “Cowpea, a multifunctional legume,” in Genomics of Tropical Crop Plants, P. H. Moore and R. Ming, Eds., pp. 227–258, Springer, New York, NY, USA, 2008.
[5]  E. Boufroy, Analyse éco-Physioloque Et Agronomique Des Perspectives D'Amélioration De La proDuction De Semences De Niébé Au Sénégal, Mémoire de DEA; ENSAM, Montpellier, France, 1994.
[6]  N. Cissé and A. E. Hall, Traditional Cowpea in Senegal, A Case Study, 2003.
[7]  K. O. Rachie and L. M. Roberts, “Grain legumes of the lowland tropics,” Advances in Agronomy, vol. 26, pp. 1–132, 1974.
[8]  I. O. Akinyele, A. O. Onigbinde, M. A. Hussain, and A. Omololu, “Physicochemical characteristics of 18 cultivars of Nigerian cowpeas (V.unguiculata) and their cooking properties,” Journal of Food Science, vol. 51, no. 6, pp. 1483–1485, 1986.
[9]  FAOSTAT, , 2004,
[10]  DSDIA/DAPS/MAE, “Résultats définitifs de la campagne agricole 1997/1998 à 2002/2003. Récaputilatif des cultures industrielles et autres cultures,” Sénégal, 3e version du 24/03/2003, 2003.
[11]  T. Yamaguchi and E. Blumwald, “Developing salt-tolerant crop plants: challenges and opportunities,” Trends in Plant Science, vol. 10, no. 12, pp. 615–620, 2005.
[12]  Food Agriculture Organization, FAO land and plant nutrition management service,, 2008.
[13]  R. Munns and M. Tester, “Mechanisms of salinity tolerance,” Annual Review of Plant Biology, vol. 59, pp. 651–681, 2008.
[14]  A. Levigneron, F. Lopez, G. Vansuyt, P. Berthomieu, P. Fourcroy, and F. Casse-Delbart, “Les plantes face au stress salin,” Cahiers Agricultures, vol. 4, no. 4, pp. 263–227, 1995.
[15]  P. M. Hasegawa, R. A. Bressan, J.-K. Zhu, and H. J. Bohnert, “Plant cellular and molecular responses to high salinity,” Annual Review of Plant Biology, vol. 51, pp. 463–499, 2000.
[16]  P. Rengasamy, “Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview,” Australian Journal of Experimental Agriculture, vol. 42, no. 3, pp. 351–361, 2002.
[17]  A. E. Klar, A água No Sistema Solo-Planta-Atmosfer, Nobel, S?o Paulo, Brazil, 1984.
[18]  B. F. Dantas, L. De Sáribeiro, and C. A. Arag?o, “Physiological response of cowpea seeds to salinity stress,” Revista Brasileira De Sementes, vol. 27, no. 1, pp. 144–148, 2005.
[19]  B. Murillo-Amador, E. Troyo-Diéguez, J. L. García-Hernández et al., “Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth,” Scientia Horticulturae, vol. 108, no. 4, pp. 423–431, 2006.
[20]  G. P. Kajal and V. R. Rao, “Effect of simulated water stress on the physiology of leaf senescence in three genotypes of cowpea (Vigna unguiculata (L.) Walp),” Indian Journal of Plant Physiology, vol. 12, no. 2, pp. 138–145, 2007.
[21]  C. Chen, C. Tao, H. Peng, and Y. Ding, “Genetic analysis of salt stress responses in asparagus bean (Vigna unguiculata (L.) ssp. sesquipedalis Verdc.),” Journal of Heredity, vol. 98, no. 7, pp. 655–665, 2007.
[22]  M. M. Hussein, L. K. Balbaa, and M. S. Gaballah, “Developing a salt tolerant cowpea using alpha tocopherol,” Journal of Applied Sciences Research, vol. 3, no. 10, pp. 1234–1239, 2007.
[23]  K. M. Tawfik, “Evaluating the use of rhizobacterin on cowpea plants grown under salt stress,” Research Journal of Agriculture and Biological Sciences, vol. 4, no. 1, pp. 26–33, 2008.
[24]  A. E. Hall and C. A. Frate, Blackeye Bean Production in California, University of California, Division of Agricultural Science, Publications, 1996.
[25]  R. Serrano, J. M. Mulet, G. Rios et al., “A glimpse of the mechanisms of ion homeostasis during salt stress,” Journal of Experimental Botany, vol. 50, pp. 1023–1036, 1999.
[26]  T. J. Flowers, “Improving crop salt tolerance,” Journal of Experimental Botany, vol. 55, no. 396, pp. 307–319, 2004.
[27]  A. Wahid, M. Hameed, and E. Rasul, “Salt Injury symptom, changes in nutrient and pigment composition and yield characteristics of mungbean,” International Journal of Agriculture and Biology, vol. 6, no. 6, pp. 1143–1145, 2004.
[28]  P. Saha, P. Chatterjee, and A. K. Biswas, “NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata l. wilczek),” Indian Journal of Experimental Biology, vol. 48, no. 6, pp. 593–600, 2010.
[29]  J. K. Zhu, “Plant salt tolerance,” Trends in Plant Science, vol. 6, no. 2, pp. 66–71, 2001.
[30]  G. Miller, N. Suzuki, S. Ciftci-Yilmaz, and R. Mittler, “Reactive oxygen species homeostasis and signalling during drought and salinity stresses,” Plant, Cell and Environment, vol. 33, no. 4, pp. 453–467, 2010.
[31]  P. D. Hare, W. A. Cress, and J. Van Staden, “Dissecting the roles of osmolyte accumulation during stress,” Plant, Cell and Environment, vol. 21, no. 6, pp. 535–553, 1998.
[32]  T. H. H. Chen and N. Murata, “Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes,” Current Opinion in Plant Biology, vol. 5, no. 3, pp. 250–257, 2002.
[33]  R. Munns, “Genes and salt tolerance: bringing them together,” New Phytologist, vol. 167, no. 3, pp. 645–663, 2005.
[34]  M. Roudani, Physiologie Comparée De Deux Espèces De Blé En Relation Avec Les Conditions De Nutrition. Métabolisme Racinaire En Milieu Salé, Thèse d'Université en Sciences Biologiques, Université de Tunis II, 1996.
[35]  N. Cissé, S. Thiaw, and M. Ndiaye, Guide De La Production Du Niébé, brochure, Institut Sénégalais de Recherches Agronomiques (ISRA), Dakar, Sénégal, 1996.
[36]  A. E. Hall, N. Cisse, S. Thiaw et al., “Development of cowpea cultivars and germplasm by the Bean/Cowpea CRSP,” Field Crops Research, vol. 82, no. 2-3, pp. 103–134, 2003.
[37]  F. A. Badiane, B. S. Gowda, N. Cissé, D. Diouf, O. Sadio, and M. P. Timko, “Genetic relationship of cowpea (Vigna unguiculata) varieties from Senegal based on SSR markers,” Genetic and Molecular Research, vol. 11, no. 1, pp. 292–304, 2012.
[38]  R. A. Viégas, A. R. B. Melo, and J. A. G. Silveira, “Nitrate reductase activity and proline accumulation in cashew (Anacardium occidentale L.) in response to salt (NaCl) shock,” Revista Brasileira De Fisiologia Vegetal, vol. 11, no. 1, pp. 21–28, 1999.
[39]  D. C?me, “Problèmes de terminologie posés par la germination et ses obstacles,” Bulletin De La Société Fran?aise De Physiologie Végétale, vol. 14, no. 1, pp. 3–9, 1968.
[40]  T. Murashige and F. Skoog, “A revised medium for rapid growth and bioassays, with tobacco tissue culture,” Physiologia Plantarum, vol. 15, no. 3, pp. 473–497, 1962.
[41]  D. I. Arnon, “Cooper enzymes in isolated chloroplasts,” Plant Physiology, vol. 24, pp. 1–15, 1949.
[42]  P. Monneveux and M. Nemmar, “Contribution à l'étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.): étude de l'accumulation de la proline au cours du cycle de développement,” Agronomie, vol. 6, pp. 583–590, 1986.
[43]  R. Development Core Team, A Language and Environment For Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2011,
[44]  H. J. Bohnert, D. E. Nelson, and R. G. Jensen, “Adaptations to environmental stresses,” Plant Cell, vol. 7, no. 7, pp. 1099–1111, 1995.
[45]  F. E. Prado, C. Boero, M. Gallardo, and J. A. González, “Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds,” Botanical Bulletin of Academia Sinica, vol. 41, no. 1, pp. 27–34, 2000.
[46]  E. G. Padilla, R. C. Lopez Sanchez, B. Eichler-Loebermann, M. Fernandez-Pascual, K. T. Barrero, and L. A. Martinez, “Salt stress affects on cowpea (Vigna unguiculata L. Walp) varieties at different growing stages,” in Conference of International Research on Food Security, National Resource Management and Rural Development, University of Hamburg, October 2009.
[47]  P. Botía, M. Carvajal, A. Cerdá, and V. Martínez, “Response of eight Cucumis melo cultivars to salinity during germination and early vegetative growth,” Agronomie, vol. 18, no. 8-9, pp. 503–513, 1998.
[48]  P. K. Gill, A. D. Sharma, P. Singh, and S. S. Bhullar, “Changes in germination, growth and soluble sugar contents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses,” Plant Growth Regulation, vol. 40, no. 2, pp. 157–162, 2003.
[49]  H. J. Bohnert, R. G. Jensen, T. J. Flowers, and A. R. Yeo, “Metabolic engineering for increased salt tolerance—the next step,” Australian Journal of Plant Physiology, vol. 23, no. 5, pp. 661–667, 1996.
[50]  IITA, “Cowpea,”, 2007.
[51]  L. Panet, l. Holderbach, and B. Djemiah, “Influence des différentes concentrations en sel des eaux d'irrigation sur la croissance du riz,” Les AnnaLes De L'INRAT, vol. 32, pp. 1–13, 1959.
[52]  R. Kingsbury and W. Epstein, “Selection for salt resistant spring wheat,” Crop Science, vol. 24, no. 2, pp. 310–315, 1984.
[53]  J. Dvorak and K. Ross, “Expression of tolerance of Na., K., Mg2+, CI-, and SO- ions and sea water in the amphiploid of Triticum aestivum x Elytrigia elongate,” Crop Science, vol. 26, no. 4, pp. 658–660, 1986.
[54]  A. A. Yeo and T. J. Flowers, “Mechanisms of salinity resistance in rice and their role as physiological criteria in plant breeding,” in SalInity Tolerance In Plants. Strategies For Crop Improvement, R. C. Stapes and G. A. Toennienssen, Eds., vol. 177, pp. 151–170, Wiley, New York, NY, USA, 1986.
[55]  M. E. Mezni, E. Bizid, and M. Harnza, “Effets de la salinité des eaux d'irrigation sur la survie et la croissance de trois cultivars de luzerne pérenne,” Fourrages, vol. 158, pp. 169–178, 1999.
[56]  T. R. Camara, L. Willadino, A. M. Torné, and M. A. Santos, “Efeito do estresse salino e da prolina exógena em calos de milho,” Revista Brasileira De Fisiologia Vegetal, vol. 12, no. 2, pp. 146–155, 2000.
[57]  B. Murillo-Amador, E. Troyo-Dieguez, H. G. Jones, F. Ayala-Chairez, C. L. Tinoco-Ojanguren, and A. Lopez-Corte's, “Screening and classification of cowpea genotypes for salt tolerance during germination,” Phyton, vol. 67, pp. 71–84, 2000.
[58]  E. Brugnoli and O. Bj?rkman, “Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy,” Planta, vol. 187, no. 3, pp. 335–347, 1992.
[59]  N. Bernstein, A. Lauchli, and W. K. Silk, “Kinematics and dynamics of sorghum (Sorghum bicolor L.) leaf development at various Na/Ca salinities. I.Elongation growth,” Plant Physiology, vol. 103, no. 4, pp. 1107–1114, 1993.
[60]  H. Evelin, R. Kapoor, and B. Giri, “Arbuscular mycorrhizal fungi in alleviation of salt stress: a review,” Annals of Botany, vol. 104, no. 7, pp. 1263–1280, 2009.
[61]  R. Gautheret, Effet du chlorure de sodium sur la croissance et l'alimentation minérale de citrus aurentium L. (bigaradier) et de l'hybride Poncirus trifoliata citru sinensis, vol. 292, Compte l'Académie des Sciences de Paris, 1981.
[62]  M. Pessarakli, “Dry matter yield, nitrogen-15 absorption, and water uptake by green bean under sodium chloride stress,” Crop Science, vol. 31, pp. 1633–1640, 1991.
[63]  M. J. Sanchez-blanco, M. Bolarin, J. J. Alarcon, and A. Torrecilas, “Salinity effect on water relations in Lycoperscion esculentum and its wild salt-tolerant relative species L.penneli,” Physiologia Plantarum, vol. 83, pp. 269–274, 1991.
[64]  J. LIyod, P. Kriedemann, and D. Aspinall, “Contrasts between citrus species in reponse to salinization: an analysis of photosynthesis and water relation for different rootstock-scion combination,” Physiologia Plantarum, vol. 78, no. 2, pp. 236–246, 1990.
[65]  M. Nieves, D. Riuz, and A. Cedra, “Influence of rootstock-scion combination in Lemon trees salt tolerance,” in Proceedings of International Society of Citriculture, pp. 387–390, Acireale, Italy, 1991.
[66]  C. T. Chen, C. C. Li, and C. H. Kao, “Senescence of rice leaves XXXI. Changes of chlorophyll, protein, and polyamine contents and ethylene production during senescence of a chlorophyll-deficient mutant,” Journal of Plant Growth Regulation, vol. 10, no. 1, pp. 201–205, 1991.
[67]  C. W. Glenn, D. K. Patten, and M. C. Drew, “Gas exchange and chlorophyll content of “Trif blue” rabbitey and “Sharp blue” southern highbush. Bluberry exposed to salinity and supplimental calcium,” Journal of the American Society For Horticultural Science, vol. 118, pp. 456–463, 1993.
[68]  D. M. Orcutt and E. T. Nilsen, Physiology of Plants Under Stress, John Wiley & Sons, New York, NY, USA, 2000.
[69]  D. Godde, “Adaptation of the photosynthetic apparatus to stress condition,” in Plant Response to Environmental Stresses, From phytohormones to Genome Reorganization, H. R. Lerner and M. Dekker, Eds., p. 499, 1999.
[70]  U. Ortega, M. Du?abeitia, S. Menendez, C. Gonzalez-Murua, and J. Majada, “Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes,” Tree Physiology, vol. 24, no. 1, pp. 65–73, 2004.
[71]  R. Guettouche, Contribution à l'identification des caractères morphophysiologiques d'adaptation à la sécheresse chez le blé dur (Triticum durum Desf) [Ph.D. Thèse de dipl?me d'agronomie approfondie], ENSA-Montpellier, France, 1990.
[72]  E. Tavakkoli, F. Fatehi, S. Coventry, P. Rengasamy, and G. K. McDonald, “Additive effects of Na+ and Cl- ions on barley growth under salinity stress,” Journal of Experimental Botany, vol. 62, no. 6, pp. 2189–2203, 2011.
[73]  C. R. Steward, “Proline accumulation: biochemical aspects,” in The Physiology and Biochemistry of Drought Resistance in Plants, L. G. Paleg and D. Aspinal, Eds., Academic Press, Adelaide, Australia, 1981.
[74]  J. H. Venekamp, “Regulation of cytosol acidity in plants under conditions of drought,” Physiologia Plantarum, vol. 76, no. 1, pp. 112–117, 1989.
[75]  J. V. Silva, C. F. De Lacerda, P. H. A. Da Costa, J. E. Filho, E. G. Filho, and J. T. Prisco, “Physiological responses of NaCl stressed cowpea plants grown in nutrient solution supplemented with CaCl2,” Brasilian Journal of Plant Physiology, vol. 15, no. 2, pp. 99–105, 2003.


comments powered by Disqus

Contact Us


微信:OALib Journal