全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diversity of Macrolichens in Bolampatti II Forest Range (Siruvani Hills), Western Ghats, Tamil Nadu, India

DOI: 10.1155/2013/124020

Full-Text   Cite this paper   Add to My Lib

Abstract:

An annotated checklist of 103 macrolichen species is provided based on identification of specimens collected from three different vegetation types within the Bolampatti II forest range, Western Ghats, India. Among them, the dominant order is Lecanorales with 47 species, while the dominant family is Parmeliaceae with 40 species. The foremost genus is Usnea with 15 species. 1. Introduction Nearly 80,000 species of fungi are available in nature [1]. Of these, approximately 17% are lichenized, forming symbioses with green algae (Chlorophyta, Viridiplantae) or the so called blue-green algae (Cyanobacteria, Bacteria). These relationships produce symbiotic organisms commonly called lichens [2]. Lichens are an outstandingly successful group of symbiotic organisms exploiting a wide range of habitats throughout the world. About 20,000 species of lichens are so far recorded across the globe, among which the Indian subcontinent harbours 2450 (12.25%) species [3]. Tropical forests, because of their complexity and variety of microhabitats, usually harbour a rich diversity of lichens. Even though they are often small and inconspicuous, especially in the lowland forest, they may play a significant role in the forest ecosystem [4]. It has been estimated that 50% of the Indian lichen biota are currently undescribed [5]. In India, the comprehensive regional treatments (both ecological and systematic) on lichens are still not available, and a few cover areas like portions of Western Ghats (Nilgiri and Palni Hills, Himalayas, and North Eastern regions) [6, 7]. Still, many of the pristine Western Ghats ecosystems remain unexplored to list out the extent and type of distribution of lichens [8]. In view to explore such important organisms, the present study has studied the macrolichens from Bolampatti II forest range, Western Ghats. The primary objective of this paper is to enumerate the macrolichens and their distribution within the forest types of the Bolampatti II forest range. 2. Materials and Methods 2.1. Study Area Bolampatti II forest range, Coimbatore district, Tamil Nadu (part of Western Ghats—76° 33′′ to 76° 46′′?E and 11° 2′′ to 10° 54′′?N), is a part of the Nilgiri Biosphere Reserve, is commonly known as Siruvani Hills (Figure 1), and is one of the biodiversity hotspots of the world. The study site is located west to Coimbatore city and north of the Walayar valley, is shaped like a horse-shoe opening eastwards, and covers an area of 197.66?km2. The Bolampatti valley consists of vegetation types progressively from lower to higher altitudes (east to west) dry

References

[1]  J. P. Schmit and G. M. Mueller, “An estimate of the lower limit of global fungal diversity,” Biodiversity and Conservation, vol. 16, no. 1, pp. 99–111, 2007.
[2]  S. T. Bates, A. Barber, E. Gilbert, et al., “A revised catalog of Arizona lichens,” Canotia, vol. 6, no. 1, pp. 26–43, 2010.
[3]  S. Nayaka, D. K. Upreti, M. Gadgil, et al., “Distribution pattern and heavy metal accumulation in lichens of Bangalore city with special reference to Lalbagh garden,” Current Science, vol. 84, no. 5, pp. 674–680, 2003.
[4]  S. R. Gradstein, “The vanishing tropical rain forest as an environment for bryophytes and lichens,” in Bryophytes and Lichens in a Changing Environment, J. W. Bates and M. F. Andrew, Eds., pp. 235–258, Clarendon Press, Oxford, UK, 1992..
[5]  H. R. Negi, “On the patterns of abundance and diversity of macrolichens of Chopta-Tunganath in the Garhwal Himalaya,” Journal of Biosciences, vol. 25, no. 4, pp. 367–378, 2000.
[6]  K. P. Singh and G. P. Sinha, Lichen Flora of Nagaland, Bishen Singh Mahendra Pal Singh, Dehra Dun, India, 1994.
[7]  K. P. Singh and G. P. Sinha, “Lichen diversity of the Eastern Himalaya and its conservation,” in Himalayan Microbial Diversity, Part 2, (Recent Researches in Ecology, Environment and Pollution), S. C. Sati, J. Saxena, and R. C. Dubey, Eds., vol. 11, pp. 349–359, Today and Tomorrow's Printers and Publishers, New Delhi, India, 1997.
[8]  M. Kumar and S. Stephen, “Lichens of Western Ghats—an overview,” in Biology of Lichens, K. G. Mukerji, B. P. Chamola, D. K. Upreti, and R. K. Upadhyay, Eds., pp. 297–331, 1999.
[9]  J. Wilson, “Working plan for the Bolampatti Range of Coimbatore Central Forest Division,” Government of Madras, pp.1–155, 1967.
[10]  H. G. Champion and S. K. Seth, A Revised Survey of the Forest Types of India, Manager of Publications, Delhi, India, 1968.
[11]  D. D. Awasthi, “Contributions to the lchen flora of India and Nepal-I. The genus Physcia (Ach.) Vain,” Journal of the Indian Botanical Society, vol. 39, no. 1, pp. 1–21, 1960.
[12]  D. D. Awasthi, A Monograph of the Lichen Genus Dirinaria, vol. 2 of Bibliotheca Lichenologica, J. Cramer, Lehre, Germany, 1975.
[13]  D. D. Awasthi and K. P. Singh, “The lichen flora in the environs of Gangotri and Gomukh, India. I-the macrolichens,” Indian Journal of Forest Research, vol. 1, pp. 138–146, 1978.
[14]  D. D. Awasthi, “Pyxine in India,” Phytomorphology, vol. 30, pp. 359–379, 1980.
[15]  D. D. Awasthi, “Lichen genus Parmelia in India. II. Subgenera Xanthoparmelia (Vain.) Hale and Melanoparmelia (Hue) Essl,” Indian Journal of Forestry, vol. 4, pp. 198–204, 1981.
[16]  G. Awasthi, “Lichen genus usnea in India,” Journal of the Hattori Botanical Laboratory, vol. 61, pp. 333–421, 1986.
[17]  D. D. Awasthi, “A key to the macrolichens of India and Nepal,” Journal of the Hattori Botanical Laboratory, vol. 65, pp. 207–302, 1988.
[18]  S. Huneck and I. Yoshimura, Identification of Lichen Substances, Springer, Tokyo, Japan, 1996.
[19]  D. L. Hawksworth, P. M. Kirk, B. C. Sutton, and D. N. Pegler, Dictionary of the Fungi, CAB International, Wallingford, UK, 8th edition, 1995.
[20]  P. A. Wolseley and D. L. Hawksworth, “Adaptations of lichens to conditions in tropical forests of South-East Asia and their taxonomic implications,” Blumea, vol. 54, no. 1–3, pp. 29–32, 2009.
[21]  P. A. Wolseley and B. Aguirre-Hudson, “The ecology and distribution of lichens in tropical deciduous and evergreen forests of Northern Thailand,” Journal of Biogeography, vol. 24, no. 3, pp. 327–343, 1997.
[22]  P. Balaji and G. N. Harihran, “Lichen diversity and its distribution pattern in Tropical Dry Evergreen Forest of Guindy National Park (GNP), Chennai,” The Indian Forester, vol. 130, no. 10, pp. 1155–1168, 2004.
[23]  P. Balaji and G. N. Harihran, “Annonated checklist of lichens of Chennai, Tamil Nadu, India,” Phytotaxonomy, vol. 5, pp. 1–7, 2005.
[24]  P. A. Wolseley and B. Aguirre-Hudson, “Fire in tropical dry forests: corticolous lichens as indicators of recent ecological changes in Thailand,” Journal of Biogeography, vol. 24, no. 3, pp. 345–362, 1997.
[25]  H. J. M. Sipman and R. C. Harris, “Lichens,” in Tropical Rain Forest Ecosystems, H. Lieth and M. J. A. Werger, Eds., pp. 303–309, Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1989.
[26]  A. Bergamini, C. Scheidegger, S. Stofer et al., “Performance of macrolichens and lichen genera as indicators of lichen species richness and composition,” Conservation Biology, vol. 19, no. 4, pp. 1051–1062, 2005.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133