All Title Author
Keywords Abstract

ISRN AIDS  2013 

Improvements in Immune Function and Activation with 48-Week Darunavir/Ritonavir-Based Therapy: GRACE Substudy

DOI: 10.1155/2013/358294

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. During the course of HIV infection, progressive immune deficiency occurs. The aim of this prospective substudy was to evaluate the recovery of functional immunity in a subset of patients from the GRACE (Gender, Race, And Clinical Experience) study treated with a DRV/r-based regimen. Methods. The recovery of functional immunity with a darunavir/ritonavir-based regimen was assessed in a subset of treatment-experienced, HIV-1 infected patients from the GRACE study. Results. 19/32 patients (59%) enrolled in the substudy were virologically suppressed (<50 copies/mL). In these patients, median (range) CD4+ cell count increased from 222 (2, 398) cells/mm3 at baseline to 398 (119, 812) cells/mm3 at Week 48. CD8+% decreased significantly from baseline to Week 48 ( ). Proliferation of CD4+ lymphocytes in response to CD3+/CD28+, phytohemagglutinin, and pokeweed was significantly increased ( ) by Week 12. Proliferation in response to Candida and tetanus was significantly increased by Week 48 ( and , resp.). Staphylococcal enterotoxin B-stimulated tumor necrosis factor-alpha and interleukin-2 in CD4+ cells was significantly increased by Week 12 ( ) and Week 48 ( ), respectively. Conclusions. Darunavir/ritonavir-based therapy demonstrated improvements in CD4+ cell recovery and association with progressive functional immune recovery over 48 weeks. This trial is registered with NCT00381303. 1. Introduction During the course of HIV-1 infection, multifactorial T-lymphocyte (T-cell)-mediated mechanisms contribute to the progressive loss of host immune function [1–5]. In infected individuals, immune dysregulation occurs early and is characterized by a decrease in CD4+ cell count, a concurrent rise in CD8+ cells, a progressive decline in the CD4+/CD8+ ratio, and defective thymocyte proliferation [6]. During late-stage disease, loss of T-cell homeostasis also occurs [7, 8]. T cells are chronically activated throughout the course of HIV infection, as indicated by an increase in the expression of the antigens Ki67, CD38, and human leukocyte antigen (HLA)-DR, with CD38 recognized as the most reliable marker of immune activation [1–3, 5, 9]. Immune activation provides the virus with a steady pool of target cells and has been linked with increased polyclonal T-cell proliferation and turnover, as well as increases in the apoptotic marker CD95 [10–13] and activation-induced cell death [12, 14–16]. Concomitant with the decline of CD4 cells in the peripheral blood, the frequency of the CD4+ CD28 null subset increases with disease progression and eventual progression to

References

[1]  L. Kestens, G. Vanham, C. Vereecken et al., “Selective increase of activation antigens HLA-DR and CD38 on CD4+ CD45RO+ T lymphocytes during HIV-1 infection,” Clinical and Experimental Immunology, vol. 95, no. 3, pp. 436–441, 1994.
[2]  M. Levacher, F. Hulstaert, S. Tallet, S. Ullery, J. J. Pocidalo, and B. A. Bach, “The significance of activation markers on CD8 lymphocytes in human immunodeficiency syndrome: staging and prognostic value,” Clinical and Experimental Immunology, vol. 90, no. 3, pp. 376–382, 1992.
[3]  J. V. Giorgi, H.-N. Ho, K. Hirji et al., “CD8+ lymphocyte activation at human immunodeficiency virus type 1 seroconversion: development of HLA-DR+ CD38- CD8+ cells is associated with subsequent stable CD4+ cell levels,” Journal of Infectious Diseases, vol. 170, no. 4, pp. 775–781, 1994.
[4]  S. A. Klein, J. M. Dobmeyer, T. S. Dobmeyer et al., “Demonstration of the Th1 to Th2 cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on single cell level by flow cytometry,” AIDS, vol. 11, no. 9, pp. 1111–1118, 1997.
[5]  Z. Liu, W. G. Cumberland, L. E. Hultin, H. E. Prince, R. Detels, and J. V. Giorgi, “Elevated CD38 antigen expression on CD8+ T cells Is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the multicenter AIDS Cohort study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR and CD38 expression,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol. 16, no. 2, pp. 83–92, 1997.
[6]  M.-L. Dion, J.-F. Poulin, R. Bordi et al., “HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation,” Immunity, vol. 21, no. 6, pp. 757–768, 2004.
[7]  A. Landay, B. Ohlsson-Wilhelm, and J. V. Giorgi, “Application of flow cytometry to the study of HIV infection,” AIDS, vol. 4, no. 6, pp. 479–497, 1990.
[8]  J. B. Margolick, A. Munoz, A. D. Donnenberg, et al., “Failure of T-cell homeostasis preceding AIDS in HIV-1 infection. The Multicenter AIDS Cohort study,” Nature Medicine, vol. 1, no. 7, pp. 674–680, 1995.
[9]  L. Kestens, G. Vanham, P. Gigase et al., “Expression of activation antigens, HLA-DR and CD38, on CD8 lymphocytes during HIV-1 infection,” AIDS, vol. 6, no. 8, pp. 793–797, 1992.
[10]  V. Appay, J. R. Almeida, D. Sauce, B. Autran, and L. Papagno, “Accelerated immune senescence and HIV-1 infection,” Experimental Gerontology, vol. 42, no. 5, pp. 432–437, 2007.
[11]  S. P. Aries, B. Schaaf, C. Muller, R. H. Dennin, and K. Dalhoff, “Fas (CD95) expression on CD4+ T cells from HIV-infected patients increases with disease progression,” Journal of Molecular Medicine, vol. 73, no. 12, pp. 591–593, 1995.
[12]  T. H. Mogensen, J. Melchjorsen, C. S. Larsen, and S. R. Paludan, “Innate immune recognition and activation during HIV infection,” Retrovirology, vol. 7, article 54, 2010.
[13]  M. E. Peter, A. Ehret, C. Berndt, and P. H. Krammer, “AIDS and the death receptors,” British Medical Bulletin, vol. 53, no. 3, pp. 604–616, 1997.
[14]  Z. Bentwich, A. Kalinkovich, Z. Weisman, and Z. Grossman, “Immune activation in the context of HIV infection,” Clinical and Experimental Immunology, vol. 111, no. 1, pp. 1–2, 1998.
[15]  Z. Grossman, M. Meier-Schellersheim, W. E. Paul, and L. J. Picker, “Pathogenesis of HIV infection: what the virus spares is as important as what it destroys,” Nature Medicine, vol. 12, no. 3, pp. 289–295, 2006.
[16]  M. D. Hazenberg, D. Hamann, H. Schuitemaker, and F. Miedema, “T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock,” Nature Immunology, vol. 1, no. 4, pp. 285–289, 2000.
[17]  L. A. Trimble, P. Shankar, M. Patterson, J. P. Daily, and J. Lieberman, “Human immunodeficiency virus-specific circulating CD8 T lymphocytes have down-modulated CD3ζ and CD28, key signaling molecules for T-cell activation,” Journal of Virology, vol. 74, no. 16, pp. 7320–7330, 2000.
[18]  J. H. Vingerhoets, G. L. Vanham, L. L. Kestens et al., “Increased cytolytic T lymphocyte activity and decreased B7 responsiveness are associated with CD28 down-regulation on CD8+ T cells from HIV-infected subjects,” Clinical and Experimental Immunology, vol. 100, no. 3, pp. 425–433, 1995.
[19]  S. T. Parish, J. E. Wu, and R. B. Effros, “Sustained CD28 expression delays multiple features of replicative senescence in human CD8 T lymphocytes,” Journal of Clinical Immunology, vol. 30, no. 6, pp. 798–805, 2010.
[20]  V. I. Avelino-Silva, Y.-L. Ho, T. J. Avelino-Silva, and S. D. S. Santos, “Aging and HIV infection,” Ageing Research Reviews, vol. 10, no. 1, pp. 163–172, 2011.
[21]  K. L. Wood, H. L. Twigg III, and A. I. Doseff, “Dysregulation of CD8+ lymphocyte apoptosis, chronic disease, and immune regulation,” Frontiers in Bioscience, vol. 14, no. 10, pp. 3771–3781, 2009.
[22]  J. V. Giorgi, Z. Liu, L. E. Hultin, W. G. Cumberland, K. Hennessey, and R. Detels, “Elevated levels of CD38+CD8+ T cells in HIV infection add to the prognostic value of low CD4+ T cell levels: results of 6 years of follow-up,” Journal of Acquired Immune Deficiency Syndromes, vol. 6, no. 8, pp. 904–912, 1993.
[23]  M. Clerici and G. M. Shearer, “A switch is a critical step in the etiology of HIV infection,” Immunology Today, vol. 14, no. 3, pp. 107–111, 1993.
[24]  B. Autran, G. Carcelain, T. S. Li et al., “Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease,” Science, vol. 277, no. 5322, pp. 112–116, 1997.
[25]  J. Estaquier, J.-D. Leliévre, F. Petit et al., “Effects of antiretroviral drugs on human immunodeficiency virus type 1-induced CD4+ T-cell death,” Journal of Virology, vol. 76, no. 12, pp. 5966–5973, 2002.
[26]  A. D. Badley, K. Parato, D. W. Cameron et al., “Dynamic correlation of apoptosis and immune activation during treatment of HIV infection,” Cell Death and Differentiation, vol. 6, no. 5, pp. 420–432, 1999.
[27]  M. Goicoechea, D. M. Smith, L. Liu et al., “Determinants of CD4+ T cell recovery during suppressive antiretroviral therapy: association of immune activation, T cell maturation markers, and cellular HIV-1 DNA,” Journal of Infectious Diseases, vol. 194, no. 1, pp. 29–37, 2006.
[28]  S. A. Riddler, R. Haubrich, A. G. DiRienzo et al., “Class-sparing regimens for initial treatment of HIV-1 infection,” The New England Journal of Medicine, vol. 358, no. 20, pp. 2095–2106, 2008.
[29]  M. Pichenot, S. Deuffic-Burban, L. Cuzin, and Y. Yazdanpanah, “Efficacy of new antiretroviral drugs in treatment-experienced HIV-infected patients: a systematic review and meta-analysis of recent randomized controlled trials,” HIV Medicine, vol. 13, no. 3, pp. 148–155, 2012.
[30]  J. M. Llibre, M. J. Buzón, M. Massanella et al., “Treatment intensification with raltegravir in subjects with sustained HIV-1 viraemia suppression: a randomized 48-week study,” Antiviral Therapy, vol. 17, no. 2, pp. 355–364, 2012.
[31]  H. Hatano, T. L. Hayes, V. Dahl et al., “A randomized, controlled trial of raltegravir intensification in antiretroviral-treated, HIV-infected patients with a suboptimal CD4+ T cell response,” Journal of Infectious Diseases, vol. 203, no. 7, pp. 960–968, 2011.
[32]  H. Byakwaga, M. Kelly, D. F. J. Purcell et al., “Intensification of antiretroviral therapy with raltegravir or addition of hyperimmune bovine colostrum in HIV-infected patients with suboptimal CD4+ T-cell response: a randomized controlled trial,” Journal of Infectious Diseases, vol. 204, no. 10, pp. 1532–1540, 2011.
[33]  J. Currier, D. A. Bridge, D. Hagins et al., “Sex-based outcomes of Darunavir-Ritonavir therapy: a single-group trial,” Annals of Internal Medicine, vol. 153, no. 6, pp. 349–357, 2010.
[34]  J. B. Angel, K. G. Parato, A. Kumar et al., “Progressive human immunodeficiency virus-specific immune recovery with prolonged viral suppression,” Journal of Infectious Diseases, vol. 183, no. 4, pp. 546–554, 2001.
[35]  H. Ullum, T. Katzenstein, H. Aladdin et al., “Immunological changes in Human Immunodeficiency Virus (HIV)-infected individuals during HIV-specific protease inhibitor treatment,” Scandinavian Journal of Immunology, vol. 49, no. 5, pp. 539–547, 1999.
[36]  R. C. Kaplan, C. M. Parrinello, H. N. Hodis, et al., “Impact of HAART initiation on immune regulation (activation/senescence) in aging HIV-infected women: Women's Interagency HIV study,” in Proceedings of the 19th Conference on Retroviruses and Opportunistic Infections, Seattle, Wash, USA, 2012.
[37]  C. Garrido, N. Rallón, V. Soriano et al., “Mechanisms involved in CD4 gains in HIV-infected patients switched to raltegravir,” AIDS, vol. 26, no. 5, pp. 551–557, 2012.
[38]  R. T. Steigbigel, D. A. Cooper, P. N. Kumar et al., “Raltegravir with optimized background therapy for resistant HIV-1 infection,” The New England Journal of Medicine, vol. 359, no. 4, pp. 339–354, 2008.
[39]  M.-L. Gougeon, H. Lecoeur, and Y. Sasaki, “Apoptosis and the CD95 system in HIV disease: impact of Highly Active Anti-Retroviral Therapy (HAART),” Immunology Letters, vol. 66, no. 1–3, pp. 97–103, 1999.
[40]  C. G. Lange, M. M. Lederman, K. Medvik et al., “Nadir CD4+ T-cell count and numbers of CD28+ CD4+ T-cells predict functional responses to immunizations in chronic HIV-1 infection,” AIDS, vol. 17, no. 14, pp. 2015–2023, 2003.
[41]  T. Niehues, G. Horneff, S. Knipp, O. Adams, and V. Wahn, “Treatment-resistant expansion of CD8+CD28-cells in pediatric HIV infection,” Pediatric Research, vol. 47, no. 3, pp. 418–421, 2000.
[42]  C. G. Lange and M. M. Lederman, “Immune reconstitution with antiretroviral therapies in chronic HIV-1 infection,” Journal of Antimicrobial Chemotherapy, vol. 51, no. 1, pp. 1–4, 2003.
[43]  A. Hill, J. Montaner, M. Lederman, A. Cutrell, S. Tortell, and D. Thorborn, “Discordant CD4/RNA responses to HAART are strongly associated with high baseline CD4 count and low HIV RNA: analysis of 406 naive patients,” in Proceedings of the 3rd International Workshop on HIV Drug Resistance and Treatment Strategies, San Diego, Calif, USA, 1999.
[44]  R. C. Kaplan, E. Sinclair, A. L. Landay et al., “T cell activation and senescence predict subclinical carotid artery disease in HIV-infected women,” Journal of Infectious Diseases, vol. 203, no. 4, pp. 452–463, 2011.

Full-Text

comments powered by Disqus