All Title Author
Keywords Abstract

A Pediatric Case of Systemic Lupus Erythematosus Developed 10 Years after Cord Blood Transplantation for Juvenile Myelomonocytic Leukemia

DOI: 10.1155/2012/619126

Full-Text   Cite this paper   Add to My Lib


Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a most powerful immunotherapy for hematological malignancies. However, the impact of immunological disturbances as a result of allo-HSCT is not understood well. We experienced an 11-year-old boy who presented with systemic lupus erythemathosus (SLE) 10 years after unrelated cord blood transplantation of male origin for juvenile myelomonocytic leukemia (JMML) with monosomy 7. Bone marrow examination showed complete remission without monosomy 7. Genetic analysis of peripheral blood revealed mixed chimera with recipient cells consisting of <5% of T cells, 50–60% of B cells, 60–75% of NK cells, 70–80% of macrophages, and 50–60% of granulocytes. Significance of persistent mixed chimera as a cause of SLE is discussed. 1. Introduction Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment to cure the hematological malignancy through the alloimmune reaction. However, excessive alloimmune reaction triggers acute graft versus host disease (aGVHD) and it attacks various organs and induces their dysfunction, which is often life-threatening. Chronic GVHD is based on more insidious alloimmune reaction and its clinical symptoms sometimes mimic autoimmune diseases. In allo-HSCT, donor cells usually replace the bone marrow cells completely, which is called complete chimera. Donor and recipient hematopoietic cells sometimes coexist stably, which is called mixed chimera. Although mixed chimera is a sign of relapse of hematological malignancy, there are cases of stable and persistent chimera without relapse. However, the impact of immunological disturbances as a result of allo-HSCT and mixed chimera is not understood well. We had an 11-year-old boy who presented with SLE 10 years after allogeneic cord blood transplantation. Interestingly, most of T cells were of donor origin, but B cells, NK cells, macrophages, and granulocytes were mixed chimera. 2. Case Report At 6-month-old, he presented with hepatosplenomegaly and skin eruption. Bone marrow examination revealed monosomy 7 and he was diagnosed as juvenile myelomonocytic leukemia through clinical evaluation. At 15-month-old, he received HLA-DRB1 one locus mismatched male-derived cord blood transplantation. Conditioning regimen was myeloablative (busulfan (140?mg/m2??× 4) + etoposide (15?mg?/kg/day × 4) + cyclophosphamide (60?mg/kg × 2) + antithymocyte globulin (2.5?mg/kg × 4)). GVHD prophylaxis was cyclosporine and short-term methotrexate. SCT was successful with only mild GVHD. Complete chimera was determined on day 41.


[1]  P. D. Emanuel, “Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia,” Leukemia, vol. 22, no. 7, pp. 1335–1342, 2008.
[2]  C. M. Niemeyer and C. P. Kratz, “Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options,” British Journal of Haematology, vol. 140, no. 6, pp. 610–624, 2008.
[3]  D. Kalaitzidis and D. G. Gilliland, “Going with the flow: JAK-STAT signaling in JMML,” Cancer Cell, vol. 14, no. 4, pp. 279–280, 2008.
[4]  A. Yoshimi, C. M. Niemeyer, V. Bohmer et al., “Chimaerism analyses and subsequent immunological intervention after stem cell transplantation in patients with juvenile myelomonocytic leukaemia,” British Journal of Haematology, vol. 129, no. 4, pp. 542–549, 2005.
[5]  M. Kitahara, K. Koike, Y. Kurokawa et al., “Lupus nephritis in juvenile myelomonocytic leukemia,” Clinical Nephrology, vol. 51, no. 5, pp. 314–318, 1999.
[6]  A. C. H. de Vries, R. G. M. Bredius, A. C. Lankester et al., “HLA-identical umbilical cord blood transplantation from a sibling donor in juvenile myelomonocytic leukemia,” Haematologica, vol. 94, no. 2, pp. 302–304, 2009.
[7]  G. C. Tsokos, “Systemic lupus erythematosus,” The New England Journal of Medicine, vol. 365, pp. 2110–2121, 2011.
[8]  A. Belot and R. Cimaz, “Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis,” Pediatric Rheumatology, vol. 10, article 21, 2012.
[9]  E. D. Papadimitraki and D. A. Isenberg, “Childhood- and adult-onset lupus: an update of similarities and differences,” Expert Review of Clinical Immunology, vol. 5, no. 4, pp. 391–403, 2009.
[10]  J. H. Moon, S. J. Lee, J. G. Kim et al., “Clinical significance of autoantibody expression in allogeneic stem-cell recipients,” Transplantation, vol. 88, no. 2, pp. 242–250, 2009.
[11]  K. M. Page, A. M. Mendizabal, V. K. Prasad et al., “Posttransplant autoimmune hemolytic anemia and other autoimmune cytopenias are increased in very young infants undergoing unrelated donor umbilical cord blood transplantation,” Biology of Blood and Marrow Transplantation, vol. 14, no. 10, pp. 1108–1117, 2008.
[12]  A. Rawal, R. Sarode, B. R. Curtis, N. J. Karandikar, K. Friedman, and Z. R. Rogers, “Acquired glanzmann's thrombasthenia as part of multiple-autoantibody syndrome in a pediatric heart transplant patient,” Journal of Pediatrics, vol. 144, no. 5, pp. 672–674, 2004.
[13]  R. Zeiser, V. H. Nguyen, A. Beilhack et al., “Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production,” Blood, vol. 108, no. 1, pp. 390–399, 2006.
[14]  H. Ozsahin, M. Cavazzana-Calvo, L. D. Notarangelo et al., “Long-term outcome following hematopoietic stem-cell transplantation in wiskott-aldrich syndrome: collaborative study of the european society for Immunodeficiencies and european group for blood and marrow transplantation,” Blood, vol. 111, no. 1, pp. 439–445, 2008.
[15]  M. Catucci, M. C. Castiello, F. Pala, et al., “Autoimmunity in wiskott-aldrich syndrome: an unsolved enigma,” Frontiers in Immunology, vol. 3, article 209, 2012.
[16]  S. Perruche, A. Marandin, F. Kleinclauss et al., “Association of mixed hematopoietic chimerism with elevated circulating autoantibodies and chronic graft-versus-host disease occurrence,” Transplantation, vol. 81, no. 4, pp. 573–582, 2006.


comments powered by Disqus

Contact Us


微信:OALib Journal