We study how may vary the gravitational and the cosmological “constants,” ( and ) in several scalar-tensor theories with Bianchi III, , and symmetries. By working under the hypothesis of self-similarity we find exact solutions for two different theoretical models, which are the Jordan-Brans-Dicke (JBD) with and the usual JBD model with potential (that mimics the behaviour of . We compare both theoretical models, and some physical and geometrical properties of the solutions are also discussed putting special emphasis on the study of the isotropization of the solutions. 1. Introduction Current observations of the large scale Cosmic Microwave Background (CMB) suggest to us that our physical universe is expanding in an accelerated way. Such observations [1–3] indicate that the universe is dominated by an unidentified “dark energy” (DE) and suggest that this unidentified dark energy has a negative pressure [4–6]. This last characteristic of the dark energy points to the vacuum energy or cosmological constant , as a possible candidate for dark energy. From the theoretical point of view, it is convenient to consider the cosmological constant as a dynamical quantity in order to solve the so-called coincidence and fine tuning problems. In the same way other observations have pointed out a possible variation of the gravitational constant [7, 8]. For example, observations of Hulse-Taylor binary pulsar [9, 10], and type Ia supernova observations [11]. For an extensive review see Uzan [12]. We have several theoretical models that consider both constants as variable with respect to the cosmic time. Such theories are modified general relativity (MGR), modified scalar cosmological models (MST), and several scalar-tensor theories (STT). The MGR and MST have a drawback, since in them the variations of and are introduced in an ad hoc manner. Nevertheless we consider that the STT are the best models to study the variation of and , since they have been deduced form variational principles and where the time dependence can occur in a natural way, without any new assumption or modification of the theory. This class of models has received a renewed interest in recent times, for two main reasons. Firstly, the new inflationary scenario as the extended inflation has a scalar field that solves several problems present in the old theories. Secondly, string theories and other unified theories contain a scalar field which plays a similar role to the scalar field of the STT. The scalar-tensor theories started with the work of Jordan in 1950 [13]. A prototype of such models was proposed
P. de Bernardis, P. A. R. Ade, J. J. Bock, et al., “A flat Universe from high-resolution maps of the cosmic microwave background radiation,” Nature, vol. 404, pp. 955–959, 2000.
S. Hanany, P. Ade, A. Balbi, et al., “MAXIMA-1: a measurement of the cosmic microwave background anisotropy on angular scales of 10'-5°,” The Astrophysical Journal Letters, vol. 545, no. 1, pp. L5–L9, 2000.
A. Balbi, P. Ade, J. Bock, et al., “Constraints on cosmological parameters from MAXIMA-1,” The Astrophysical Journal Letters, vol. 545, no. 1, pp. L1–L4, 2000.
S. Perlmutter, G. Aldering, M. Della Valle, et al., “Discovery of a supernova explosion at half the age of the Universe,” Nature, vol. 391, no. 6662, pp. 51–54, 1998.
S. Perlmutter, G. Aldering, G. Goldhaber, et al., “Measurements of and from 42 high-redshift supernovae,” Astrophysical Journal, vol. 517, no. 2, pp. 565–586, 1999.
P. M. Garnavich, R. P. Kirshner, P. Challis, et al., “Constraints on cosmological models from Hubble space telescope observations of high-z supernovae,” The Astrophysical Journal Letters, vol. 493, no. 2, pp. L53–L57, 1998.
S. D. Innocenti, G. Fiorentini, G. G. Raffelt, B. Ricci, and A. Weiss, “Time variation of Newton's constant and the age of globular clusters,” Astronomy & Astrophysics, vol. 312, pp. 345–352, 1996.
K. Umezu, K. Ichiki, M. Yahiro, et al., “Cosmological constraints on Newton’s constant,” Physical Review D, vol. 72, no. 4, Article ID 044010, 5 pages, 2005.
G. S. Bisnovatyi-Kogan, “Checking the variability of the gravitational constant with binary pulsars,” International Journal of Modern Physics D, vol. 15, no. 7, pp. 1047–1052, 2006.
T. Damour, G. W. Gibbons, and J. H. Taylor, “Limits on the variability of G using binary-pulsar data,” Physical Review Letters, vol. 61, no. 10, pp. 1151–1154, 1988.
A. Riess, A. V. Filippenko, P. Challis, et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” The Astronomical Journal, vol. 116, no. 3, pp. 1009–1038, 1998.
K. Nordtvedt Jr., “Post-Newtonian metric for a general class of scalar-tensor gravitational theories and observational consequences,” Astrophysical Journal, vol. 161, pp. 1059–1067, 1970.
K. Rosquist and R. T. Jantzen, “Spacetimes with a transitive similarity group,” Classical and Quantum Gravity, vol. 2, no. 6, article 004, pp. L129–L133, 1985.
J. A. Belinchón, “Exact self-similar Bianchi II solutions for some scalar-tensor theories,” Astrophysics and Space Science, vol. 345, no. 2, pp. 387–397, 2013.
U. S. Nilsson, C. Uggla, J. Wainwright, and W. C. Lim, “An almost isotropic cosmic microwave temperature does not imply an almost isotropic universe,” The Astrophysical Journal Letters, vol. 522, no. 1, p. L1, 1999.
J. Wainwright and P. J. Anderson, “Isotropic singularities and isotropization in a class of Bianchi type-VIh cosmologies,” General Relativity and Gravitation, vol. 16, no. 7, pp. 609–624, 1984.
B. Bertotti, L. Iess, and P. Tortora, “A test of general relativity using radio links with the Cassini spacecraft,” Nature, vol. 425, no. 6956, pp. 374–376, 2003.