All Title Author
Keywords Abstract


Impact of Endothelial Microparticles on Coagulation, Inflammation, and Angiogenesis in Age-Related Vascular Diseases

DOI: 10.1155/2013/734509

Full-Text   Cite this paper   Add to My Lib

Abstract:

Endothelial microparticles (EMPs) are complex vesicular structures that originate from plasma membranes of activated or apoptotic endothelial cells. EMPs play a significant role in vascular function by altering the processes of inflammation, coagulation, and angiogenesis, and they are key players in the pathogenesis of several vascular diseases. Circulating EMPs are increased in many age-related vascular diseases such as coronary artery disease, peripheral vascular disease, cerebral ischemia, and congestive heart failure. Their elevation in plasma has been considered as both a biomarker and bioactive effector of vascular damage and a target for vascular diseases. This review focuses on the pleiotropic roles of EMPs and the mechanisms that trigger their formation, particularly the involvement of decreased estrogen levels, thrombin, and PAI-1 as major factors that induce EMPs in age-related vascular diseases. 1. Introduction Vascular diseases are among the most common causes of morbidity and mortality, and both number and severity of morbid vascular conditions increase with age. Regulations of angiogenesis, coagulation, and inflammation are very important issues in vascular biology, both in normal physiology and pathology [1]. It is now well established that disruption of endothelial integrity represents a crucial event in the initiation and development of cardiovascular (CV) diseases. Numerous studies have reported that microparticles (MPs) play an important role in endothelial dysfunction. Endothelial dysfunction occurs when a perturbed homeostatic endothelium disrupts vascular competency resulting in reduced vasodilatation and increased proinflammatory and prothrombotic properties of the vascular network [2]. Recently, MPs originating from various cells have been found to be associated with several vascular related diseases. Moreover, exposed procoagulant phospholipids and specific receptors at the surface of MPs act as biomessengers linking inflammation, coagulation, and angiogenesis [3–5]. Although MPs were first described as “cellular debris” that are believed to have no biological significance, recent studies documented that MPs of endothelial and other origins are biological effectors in inflammation, vascular injury, angiogenesis, and thrombosis [6–8]. MPs isolated from granulation tissue are derived from endothelial cells, monocytes, platelets, erythrocytes [9–13], and myofibroblasts [8]. They exchange biological signals and information intercellularly and each kind of MP carries the antigens and receptors of the cells they originated. MPs may

References

[1]  W. Liu, N. Reinmuth, O. Stoeltzing et al., “Antiangiogenic therapy targeting factors that enhance endothelial cell survival,” Seminars in Oncology, vol. 29, no. 3, pp. 96–103, 2002.
[2]  D. H. Endemann and E. L. Schiffrin, “Endothelial dysfunction,” Journal of the American Society of Nephrology, vol. 15, no. 8, pp. 1983–1992, 2004.
[3]  D. Burger, A. C. Montezano, N. Nishigaki, Y. He, A. Carter, and R. M. Touyz, “Endothelial microparticle formation by angiotensin II is mediated via ang II receptor type I/NADPH Oxidase/rho kinase pathways targeted to lipid rafts,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 8, pp. 1898–1907, 2011.
[4]  A. S. Leroyer, F. Anfosso, R. Lacroix et al., “Endothelial-derived microparticles: biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis,” Thrombosis and Haemostasis, vol. 104, no. 3, pp. 456–463, 2010.
[5]  A. P. Owens and N. MacKman, “Microparticles in hemostasis and thrombosis,” Circulation Research, vol. 108, no. 10, pp. 1284–1297, 2011.
[6]  C. M. Boulanger, “Microparticles, vascular function and hypertension,” Current Opinion in Nephrology and Hypertension, vol. 19, no. 2, pp. 177–180, 2010.
[7]  C. M. Boulanger and F. Dignat-George, “Microparticles: an introduction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 1, pp. 2–3, 2011.
[8]  V. J. Moulin, D. Mayrand, H. Messier, M. C. Martinez, C. A. Lopez-Vallé, and H. Genest, “Shedding of microparticles by myofibroblasts as mediator of cellular cross-talk during normal wound healing,” Journal of Cellular Physiology, vol. 225, no. 3, pp. 734–740, 2010.
[9]  P. Wolf, “The nature and significance of platelet products in human plasma,” The British Journal of Haematology, vol. 13, no. 3, pp. 269–288, 1967.
[10]  R. J. Berckmans, R. Nieuwland, A. N. B?ing, F. P. H. T. M. Romijn, C. E. Hack, and A. Sturk, “Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation,” Thrombosis and Haemostasis, vol. 85, no. 4, pp. 639–646, 2001.
[11]  A. S. Leroyer, H. Isobe, G. Lesèche et al., “Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques,” Journal of the American College of Cardiology, vol. 49, no. 7, pp. 772–777, 2007.
[12]  F. Meziani, A. Tesse, and R. Andriantsitohaina, “Microparticles are vectors of paradoxical information in vascular cells including the endothelium: role in health and diseases,” Pharmacological Reports, vol. 60, no. 1, pp. 75–84, 2008.
[13]  G. N. Chironi, C. M. Boulanger, A. Simon, F. Dignat-George, J. Freyssinet, and A. Tedgui, “Endothelial microparticles in diseases,” Cell and Tissue Research, vol. 335, no. 1, pp. 143–151, 2009.
[14]  S. F. Mause and C. Weber, “Microparticles: protagonists of a novel communication network for intercellular information exchange,” Circulation Research, vol. 107, no. 9, pp. 1047–1057, 2010.
[15]  L. L. Horstman and Y. S. Ahn, “Platelet microparticles: a wide-angle perspective,” Critical Reviews in Oncology/Hematology, vol. 30, no. 2, pp. 111–142, 1999.
[16]  M. N. A. Hussein, E. W. Meesters, N. Osmanovic, F. P. H. T. M. Romijn, R. Nieuwland, and A. Sturk, “Antigenic characterization of endothelial cell-derived microparticles and their detection ex vivo,” Journal of Thrombosis and Haemostasis, vol. 1, no. 11, pp. 2434–2443, 2003.
[17]  V. Combes, A. Simon, G. Grau et al., “In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant,” Journal of Clinical Investigation, vol. 104, no. 1, pp. 93–102, 1999.
[18]  M. C. Martínez, A. Tesse, F. Zobairi, and R. Andriantsitohaina, “Shed membrane microparticles from circulating and vascular cells in regulating vascular function,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 288, no. 3, pp. H1004–H1009, 2005.
[19]  M. Diamant, M. E. Tushuizen, A. Sturk, and R. Nieuwland, “Cellular microparticles: new players in the field of vascular disease?” European Journal of Clinical Investigation, vol. 34, no. 6, pp. 392–401, 2004.
[20]  2012 NHLBI Fact Book, Chapter 4, Disease Statistics: Prevalence of Common Cardiovascular and Lung Diseases, US., 2007–2011.
[21]  Morbidity & Mortality: 2012 Chart Book on Cardiovascular, Lung, and Blood Diseases.
[22]  P. E. Belchetz, “Hormonal treatment of postmenopausal women,” The New England Journal of Medicine, vol. 330, no. 15, pp. 1062–1071, 1994.
[23]  F. Grodstein, M. J. Stampfer, J. E. Manson et al., “Postmenopausal estrogen and progestin use and the risk of cardiovascular disease,” The New England Journal of Medicine, vol. 335, no. 7, pp. 453–461, 1996.
[24]  S. E. Dick, D. E. DeWitt, and B. D. Anawalt, “Postmenopausal hormone replacement therapy and major clinical outcomes: a focus on cardiovascular disease, osteoporosis, dementia, and breast and endometrial neoplasia,” The American Journal of Managed Care, vol. 8, no. 1, pp. 95–104, 2002.
[25]  S. Hulley, D. Grady, T. Bush et al., “Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women,” The Journal of the American Medical Association, vol. 280, no. 7, pp. 605–613, 1998.
[26]  C. M. Viscoli, L. M. Brass, W. N. Kernan, P. M. Sarrel, S. Suissa, and R. I. Horwitz, “A clinical trial of estrogen-replacement therapy after ischemic stroke,” The New England Journal of Medicine, vol. 345, no. 17, pp. 1243–1249, 2001.
[27]  T. Simoncini, “Mechanisms of action of estrogen receptors in vascular cells: relevance for menopause and aging,” Climacteric, vol. 12, no. 1, pp. 6–11, 2009.
[28]  O. Morel, F. Toti, B. Hugel et al., “Procoagulant microparticles: disrupting the vascular homeostasis equation?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 12, pp. 2594–2604, 2006.
[29]  F. Bretelle, F. Sabatier, D. Desprez et al., “Circulating microparticles: a marker of procoagulant state in normal pregnancy and pregnancy complicated by preeclampsia or intrauterine growth restriction,” Thrombosis and Haemostasis, vol. 89, no. 3, pp. 486–492, 2003.
[30]  M. J. VanWijk, K. Boer, R. J. Berckmans et al., “Enhanced coagulation activation in preeclampsia: the role of APC resistance, microparticles and other plasma constituents,” Thrombosis and Haemostasis, vol. 88, no. 3, pp. 415–420, 2002.
[31]  Z. Mallat, H. Benamer, B. Hugel et al., “Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes,” Circulation, vol. 101, no. 8, pp. 841–843, 2000.
[32]  R. A. Preston, W. Jy, J. J. Jimenez et al., “Effects of severe hypertension on endothelial and platelet microparticles,” Hypertension, vol. 41, no. 2, pp. 211–217, 2003.
[33]  C. M. Boulanger, A. Scoazec, T. Ebrahimian et al., “Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction,” Circulation, vol. 104, no. 22, pp. 2649–2652, 2001.
[34]  D. Burger and R. M. Touyz, “Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells,” Journal of the American Society of Hypertension, vol. 6, no. 2, pp. 85–99, 2012.
[35]  A. S. Shet, O. Aras, K. Gupta et al., “Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes,” Blood, vol. 102, no. 7, pp. 2678–2683, 2003.
[36]  L. L. Horstman, W. Jy, J. J. Jimenez, and Y. S. Ahn, “Endothelial microparticles as markers of endothelial dysfunction,” Frontiers in Bioscience, vol. 9, pp. 1118–1135, 2004.
[37]  J. J. Jimenez, W. Jy, L. M. Mauro, C. Soderland, L. L. Horstman, and Y. S. Ahn, “Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis,” Thrombosis Research, vol. 109, no. 4, pp. 175–180, 2003.
[38]  A. F. Tramontano, R. Lyubarova, J. Tsiakos, T. Palaia, J. R. Deleon, and L. Ragolia, “Circulating endothelial microparticles in diabetes mellitus,” Mediators of Inflammation, vol. 2010, Article ID 250476, 8 pages, 2010.
[39]  S. H. van Ierssel, E. M. van Craenenbroeck, V. M. Conraads et al., “Flow cytometric detection of endothelial microparticles (EMP): effects of centrifugation and storage alter with the phenotype studied,” Thrombosis Research, vol. 125, no. 4, pp. 332–339, 2010.
[40]  P. J. Yong, C. H. Koh, and W. Shim, “Endothelial microparticles: missing link in endothelial dysfunction?” European Journal of Preventive Cardiology, vol. 20, no. 3, pp. 496–512, 2013.
[41]  J. Huber, A. Vales, G. Mitulovic et al., “Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 1, pp. 101–107, 2002.
[42]  M. J. VanWijk, E. VanBavel, A. Sturk, and R. Nieuwland, “Microparticles in cardiovascular diseases,” Cardiovascular Research, vol. 59, no. 2, pp. 277–287, 2003.
[43]  N. MacKman and G. E. Davis, “Blood coagulation and blood vessel development: is tissue factor the missing link?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 11, pp. 2364–2366, 2011.
[44]  P. Rautou, A. S. Leroyer, B. Ramkhelawon et al., “Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration,” Circulation Research, vol. 108, no. 3, pp. 335–343, 2011.
[45]  A. Ludwicka-Bradley, E. Tourkina, S. Suzuki et al., “Thrombin upregulates interleukin-8 in lung fibroblasts via cleavage of proteolytically activated receptor-I and protein kinase C-γ activation,” The American Journal of Respiratory Cell and Molecular Biology, vol. 22, no. 2, pp. 235–243, 2000.
[46]  A. M. Curtis, P. F. Wilkinson, M. Gui, T. L. Gales, E. Hu, and J. M. Edelberg, “p38 mitogen-activated protein kinase targets the production of proinflammatory endothelial microparticles,” Journal of Thrombosis and Haemostasis, vol. 7, no. 4, pp. 701–709, 2009.
[47]  D. B. Peterson, T. Sander, S. Kaul et al., “Comparative proteomic analysis of PAI-1 and TNF-alpha-derived endothelial microparticles,” Proteomics, vol. 8, no. 12, pp. 2430–2446, 2008.
[48]  M. Franchini, “Hemostasis and aging,” Critical Reviews in Oncology/Hematology, vol. 60, no. 2, pp. 144–151, 2006.
[49]  G. A. Zimmerman, “Thinking small, but with big league consequences: procoagulant microparticles in the alveolar space,” The American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 297, no. 6, pp. L1033–L1034, 2009.
[50]  S. V. Brodsky, K. Malinowski, M. Golightly, J. Jesty, and M. S. Goligorsky, “Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential,” Circulation, vol. 106, no. 18, pp. 2372–2378, 2002.
[51]  J. P. Rerolle, A. Hertig, G. Nguyen, J. D. Sraer, and E. P. Rondeau, “Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis,” Kidney International, vol. 58, no. 5, pp. 1841–1850, 2000.
[52]  M. Philippova, Y. Suter, S. Toggweiler et al., “T-cadherin is present on endothelial microparticles and is elevated in plasma in early atherosclerosis,” European Heart Journal, vol. 32, no. 6, pp. 760–771, 2011.
[53]  M. A. Krupiczojc, C. J. Scotton, and R. C. Chambers, “Coagulation signalling following tissue injury: focus on the role of factor Xa,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 6-7, pp. 1228–1237, 2008.
[54]  R. C. Chambers, “Procoagulant signalling mechanisms in lung inflammation and fibrosis: novel opportunities for pharmacological intervention?” The British Journal of Pharmacology, vol. 153, supplement 1, pp. S367–S378, 2008.
[55]  A. Ludwicka-Bradley, G. Bogatkevich, and R. M. Silver, “Thrombin-mediated cellular events in pulmonary fibrosis associated with systemic sclerosis (scleroderma),” Clinical and Experimental Rheumatology, vol. 22, no. 3, supplement 33, pp. S38–S46, 2004.
[56]  B. G. Bachhuber, I. J. Sarembock, L. W. Gimple, and G. K. Owens, “α-thrombin induces transforming growth factor-β1 mRNA and protein in cultured vascular smooth muscle cells via a proteolytically activated receptor,” Journal of Vascular Research, vol. 34, no. 1, pp. 41–48, 1997.
[57]  A. Ludwicka-Bradley, R. M. Silver, and G. S. Bogatkevich, “Coagulation and autoimmunity in scleroderma interstitial lung disease,” Seminars in Arthritis and Rheumatism, vol. 41, no. 2, pp. 212–222, 2011.
[58]  C. Sapet, S. Simoncini, B. Loriod et al., “Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2,” Blood, vol. 108, no. 6, pp. 1868–1876, 2006.
[59]  S. Simoncini, M. Njock, S. Robert et al., “Trail/Apo2L mediates the release of procoagulant endothelial microparticles induced by thrombin in vitro: a potential mechanism linking inflammation and coagulation,” Circulation Research, vol. 104, no. 8, pp. 943–951, 2009.
[60]  T. Ueba, T. Haze, M. Sugiyama et al., “Level, distribution and correlates of platelet-derived microparticles in healthy individuals with special reference to the metabolic syndrome,” Thrombosis and Haemostasis, vol. 100, no. 2, pp. 280–285, 2008.
[61]  H. Takeya, E. C. Gabazza, S. Aoki, H. Ueno, and K. Suzuki, “Synergistic effect of sphingosine 1-phosphate on thrombin-induced tissue factor expression in endothelial cells,” Blood, vol. 102, no. 5, pp. 1693–1700, 2003.
[62]  M. C. Martinez and R. Andriantsitohaina, “Microparticles in angiogenesis: therapeutic potential,” Circulation Research, vol. 109, no. 1, pp. 110–119, 2011.
[63]  H. Obinata and T. Hla, “Sphingosine 1-phosphate in coagulation and inflammation,” Seminars in Immunopathology, vol. 34, no. 1, pp. 73–91, 2012.
[64]  M. Markiewicz, S. S. Nakerakanti, B. Kapanadze, A. Ghatnekar, and M. Trojanowska, “Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells,” Microcirculation, vol. 18, no. 1, pp. 1–11, 2011.
[65]  W. Jy, J. J. Jimenez, L. M. Mauro et al., “Endothelial microparticles induce formation of platelet aggregates via a von Willebrand factor/ristocetin dependent pathway, rendering them resistant to dissociation,” Journal of Thrombosis and Haemostasis, vol. 3, no. 6, pp. 1301–1308, 2005.
[66]  F. Sabatier, V. Roux, F. Anfosso, L. Camoin, J. Sampol, and F. Dignat-George, “Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity,” Blood, vol. 99, no. 11, pp. 3962–3970, 2002.
[67]  W. Jy, A. Minagar, J. J. Jimenez et al., “Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis,” Frontiers in Bioscience, vol. 9, pp. 3137–3144, 2004.
[68]  M. Cesari, M. Pahor, and R. A. Incalzi, “Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions,” Cardiovascular Therapeutics, vol. 28, no. 5, pp. e72–e91, 2010.
[69]  C. J. Epstein, G. M. Martin, A. L. Schultz, and A. G. Motulsky, “Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process,” Medicine, vol. 45, no. 3, pp. 177–221, 1966.
[70]  R. Lacroix and F. Dignat-George, “Microparticles as a circulating source of procoagulant and fibrinolytic activities in the circulation,” Thrombosis Research, vol. 129, supplement 2, pp. S27–S29, 2012.
[71]  S. Q. van Veen, J. C. M. Meijers, M. Levi, T. M. van Gulik, and M. A. Boermeester, “Effects of intra-abdominal administration of recombinant tissue plasminogen activator on coagulation, fibrinolysis and inflammatory responses in experimental polymicrobial peritonitis,” Shock, vol. 27, no. 5, pp. 534–541, 2007.
[72]  F. Tita-Nwa, A. Bos, A. Adjei, W. B. Ershler, D. L. Longo, and L. Ferrucci, “Correlates of D-dimer in older persons,” Aging—Clinical and Experimental Research, vol. 22, no. 1, pp. 20–23, 2010.
[73]  Y. Song, H. Shen, D. Schenten, P. Shan, P. J. Lee, and D. R. Goldstein, “Aging enhances the basal production of IL-6 and CCL2 in vascular smooth muscle cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 1, pp. 103–109, 2012.
[74]  J. Folkman and Y. Shing, “Angiogenesis,” The Journal of Biological Chemistry, vol. 267, no. 16, pp. 10931–10934, 1992.
[75]  V. Djonov, M. Schmid, S. A. Tschanz, and P. H. Burri, “Intussusceptive angiogenesis. Its role in embryonic vascular network formation,” Circulation Research, vol. 86, no. 3, pp. 286–292, 2000.
[76]  J. Li, Y. Zhang, and R. S. Kirsner, “Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix,” Microscopy Research and Technique, vol. 60, no. 1, pp. 107–114, 2003.
[77]  S. V. Brodsky, F. Zhang, A. Nasjletti, and M. S. Goligorsky, “Endothelium-derived microparticles impair endothelial function in vitro,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 286, no. 5, pp. H1910–H1915, 2004.
[78]  P. J. Mateos-Caceres, J. J. Zamorano-Leon, P. Rodriguez-Sierra, C. Macaya, and A. J. Lopez-Farre, “New and old mechanisms associated with hypertension in the elderly,” International Journal of Hypertension, vol. 2012, Article ID 150107, 10 pages, 2012.
[79]  K. H. Jung, K. Chu, S. T. Lee et al., “Circulating endothelial microparticles as a marker of cerebrovascular disease,” Annals of Neurology, vol. 66, no. 2, pp. 191–199, 2009.
[80]  A. Mezentsev, R. M. H. Merks, E. O'Riordan et al., “Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 289, no. 3, pp. H1106–H1114, 2005.
[81]  P. Davizon and J. A. López, “Microparticles and thrombotic disease,” Current Opinion in Hematology, vol. 16, no. 5, pp. 334–341, 2009.
[82]  V. L. T. Ballard and J. M. Edelberg, “Targets for regulating angiogenesis in the ageing endothelium,” Expert Opinion on Therapeutic Targets, vol. 11, no. 11, pp. 1385–1399, 2007.
[83]  P. E. Gates, W. D. Strain, and A. C. Shore, “Human endothelial function and microvascular ageing,” Experimental Physiology, vol. 94, no. 3, pp. 311–316, 2009.
[84]  D. Burger, D. G. Kwart, A. C. Montezano et al., “Microparticles induce cell cycle arrest through redox-sensitive processes in endothelial cells: implications in vascular senescence,” Journal of the American Heart Association, vol. 1, no. 3, Article ID e001842, 2012.
[85]  N. Amabile, P. Rautou, A. Tedgui, and C. M. Boulanger, “Microparticles: key protagonists in cardiovascular disorders,” Seminars in Thrombosis and Hemostasis, vol. 36, no. 8, pp. 907–916, 2010.
[86]  Z. Mallat, B. Hugel, J. Ohan, G. Lesèche, J. Freyssinet, and A. Tedgui, “Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity,” Circulation, vol. 99, no. 3, pp. 348–353, 1999.
[87]  R. Lacroix, F. Sabatier, A. Mialhe et al., “Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro,” Blood, vol. 110, no. 7, pp. 2432–2439, 2007.
[88]  M. A. Thomashow, D. Shimbo, M. A. Parikh et al., “Endothelial microparticles in mild chronic obstructive pulmonary disease and emphysema. The multiethnic study of atherosclerosis chronic obstructive pulmonary disease study,” The American Journal of Respiratory and Critical Care Medicine, vol. 188, no. 1, pp. 60–68, 2013.
[89]  J. M. Edelberg and M. J. Reed, “Aging and angiogenesis,” Frontiers in Bioscience, vol. 8, pp. s1199–s1209, 2003.
[90]  J. M. Hill, G. Zalos, J. P. J. Halcox et al., “Circulating endothelial progenitor cells, vascular function, and cardiovascular risk,” The New England Journal of Medicine, vol. 348, no. 7, pp. 593–600, 2003.
[91]  C. Heiss, S. Keymel, U. Niesler, J. Ziemann, M. Kelm, and C. Kalka, “Impaired progenitor cell activity in age-related endothelial dysfunction,” Journal of the American College of Cardiology, vol. 45, no. 9, pp. 1441–1448, 2005.
[92]  M. Markiewicz, Y. Asano, S. Znoyko, Y. Gong, D. K. Watson, and M. Trojanowska, “Distinct effects of gonadectomy in male and female mice on collagen fibrillogenesis in the skin,” Journal of Dermatological Science, vol. 47, no. 3, pp. 217–226, 2007.
[93]  T. Koike, R. B. Vernon, M. D. Gooden, E. Sadoun, and M. J. Reed, “Inhibited angiogenesis in aging: a role for TIMP-2,” Journals of Gerontology A, vol. 58, no. 9, pp. 798–805, 2003.
[94]  C. N. Bagot, M. S. Marsh, M. Whitehead et al., “The effect of estrone on thrombin generation may explain the different thrombotic risk between oral and transdermal hormone replacement therapy,” Journal of Thrombosis and Haemostasis, vol. 8, no. 8, pp. 1736–1744, 2010.
[95]  D. E. Morales, K. A. McGowan, D. S. Grant et al., “Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model,” Circulation, vol. 91, no. 3, pp. 755–763, 1995.
[96]  H. W. Schnaper, K. A. McGowan, S. Kim-Schulze, and M. C. Cid, “oestrogen and endothelial cell angiogenic activity,” Clinical and Experimental Pharmacology and Physiology, vol. 23, no. 3, pp. 247–250, 1996.
[97]  C. D. Venkov, A. B. Rankin, and D. E. Vaughan, “Identification of authentic estrogen receptor in cultured endothelial cells: a potential mechanism for steroid hormone regulation of endothelial function,” Circulation, vol. 94, no. 4, pp. 727–733, 1996.
[98]  S. Kim-Schulze, K. A. McGowan, S. C. Hubchak et al., “Expression of an estrogen receptor by human coronary artery and umbilical vein endothelial cells,” Circulation, vol. 94, no. 6, pp. 1402–1407, 1996.
[99]  X. Jin, Y. C. Chen, W. Q. Liu, H. Y. Wang, B. Wang, and Z. Zeng, “Estradiol promote myocardial anglogenesis in a rat model of acute myocardial infarction through estrogen receptors,” Sichuan Da Xue Xue Bao Yi Xue Ban, vol. 39, no. 3, pp. 398–401, 2008.
[100]  K. L. Hamilton, L. Lin, Y. Wang, and A. A. Knowlton, “Effect of ovariectomy on cardiac gene expression: inflammation and changes in SOCS gene expression,” Physiological Genomics, vol. 32, no. 2, pp. 254–263, 2008.
[101]  A. S. Pechenino, L. Lin, F. N. Mbai et al., “Impact of aging versus estrogen loss on cardiac gene expression: estrogen replacement and inflammation,” Physiological Genomics, vol. 43, no. 18, pp. 1065–1073, 2011.
[102]  A. A. Knowlton and A. R. Lee, “Estrogen and the cardiovascular system,” Pharmacology and Therapeutics, vol. 135, no. 1, pp. 54–70, 2012.
[103]  S. Gopal, S. Garibaldi, L. Goglia et al., “Estrogen regulates endothelial migration via plasminogen activator inhibitor (PAI-1),” Molecular Human Reproduction, vol. 18, no. 8, pp. 410–416, 2012.
[104]  D. W. Losordo and J. M. Isner, “Estrogen and angiogenesis: a review,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 1, pp. 6–12, 2001.
[105]  R. R. Greb, O. Heikinheimo, R. F. Williams, G. D. Hodgen, and A. L. Goodman, “Vascular endothelial growth factor in primate endometrium is regulated by oestrogen-receptor and progesterone-receptor ligands in vivo,” Human Reproduction, vol. 12, no. 6, pp. 1280–1292, 1997.
[106]  M. Rusnati, G. Casarotti, S. Pecorelli, G. Ragnotti, and M. Presta, “Estro-progestinic replacement therapy modulates the levels of basic fibroblast growth factor (bFGF) in postmenopausal endometrium,” Gynecologic Oncology, vol. 48, no. 1, pp. 88–93, 1993.
[107]  M. C. Cid, H. K. Kleinman, D. S. Grant, H. W. Schnaper, A. S. Fauci, and G. S. Hoffman, “Estradiol enhances leukocyte binding to tumor necrosis factor (TNF)-stimulated endothelial cells via an increase in TNF-induced adhesion molecules E-selectin, intercellular adhesion molecule type 1, and vascular cell adhesion molecule type 1,” Journal of Clinical Investigation, vol. 93, no. 1, pp. 17–25, 1994.
[108]  M. C. Cid, H. W. Schnaper, and H. K. Kleinman, “Estrogens and the vascular endothelium,” Annals of the New York Academy of Sciences, vol. 966, pp. 143–157, 2002.
[109]  M. J. Reed and J. M. Edelberg, “Impaired angiogenesis in the aged,” Science of Aging Knowledge Environment, vol. 2004, no. 7, p. pe7, 2004.
[110]  M. Jayachandran, R. D. Litwiller, W. G. Owen, and V. M. Miller, “Circulating microparticles and endogenous estrogen in newly menopausal women,” Climacteric, vol. 12, no. 2, pp. 177–184, 2009.
[111]  A. Rank, R. Nieuwland, K. Nikolajek et al., “Hormone replacement therapy leads to increased plasma levels of platelet derived microparticles in postmenopausal women,” Archives of Gynecology and Obstetrics, vol. 285, no. 4, pp. 1035–1041, 2012.
[112]  A. Forest, E. Pautas, P. Ray et al., “Circulating microparticles and procoagulant activity in elderly patients,” Journals of Gerontology A, vol. 65, no. 4, pp. 414–420, 2010.
[113]  J. Simak, M. P. Gelderman, H. Yu, V. Wright, and A. E. Baird, “Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome,” Journal of Thrombosis and Haemostasis, vol. 4, no. 6, pp. 1296–1302, 2006.
[114]  J. B. Williams, E. C. Jauch, C. J. Lindsell, and B. Campos, “Endothelial microparticle levels are similar in acute ischemic stroke and stroke mimics due to activation and not apoptosis/necrosis,” Academic Emergency Medicine, vol. 14, no. 8, pp. 685–690, 2007.
[115]  L. Carcaillon, M. Alhenc-Gelas, Y. Bejot et al., “Increased thrombin generation is associated with acute ischemic stroke but not with coronary heart disease in the elderly: the three-city cohort study,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 6, pp. 1445–1451, 2011.
[116]  T. Hoekstra, J. M. Geleijnse, C. Kluft, E. J. Giltay, F. J. Kok, and E. G. Schouten, “4G/4G genotype of PAI-1 gene is associated with reduced risk of stroke in elderly,” Stroke, vol. 34, no. 12, pp. 2822–2828, 2003.
[117]  H. M. Bj?rck, P. Eriksson, U. Alehagen et al., “Gender-specific association of the plasminogen activator inhibitor-1 4G/5G polymorphism with central arterial blood pressure,” The American Journal of Hypertension, vol. 24, no. 7, pp. 802–808, 2011.
[118]  E. Steogonekpień, E. Stankiewicz, J. Zalewski, J. Godlewski, K. zmudka, and I. Wybrańska, “Number of microparticles generated during acute myocardial infarction and stable angina correlates with platelet activation,” Archives of Medical Research, vol. 43, no. 1, pp. 31–35, 2012.
[119]  J. Sinning, J. Losch, K. Walenta, M. B?hm, G. Nickenig, and N. Werner, “Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes,” European Heart Journal, vol. 32, no. 16, pp. 2034–2041, 2011.
[120]  N. Amabile, C. Heiss, W. M. Real et al., “Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension,” The American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 11, pp. 1268–1275, 2008.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal