All Title Author
Keywords Abstract


Role of Antidiarrhoeal Drugs as Adjunctive Therapies for Acute Diarrhoea in Children

DOI: 10.1155/2013/612403

Full-Text   Cite this paper   Add to My Lib

Abstract:

Acute diarrhoea is a leading cause of child mortality in developing countries. Principal pathogens include Escherichia coli, rotaviruses, and noroviruses. 90% of diarrhoeal deaths are attributable to inadequate sanitation. Acute diarrhoea is the second leading cause of overall childhood mortality and accounts for 18% of deaths among children under five. In 2004 an estimated 1.5 million children died from diarrhoea, with 80% of deaths occurring before the age of two. Treatment goals are to prevent dehydration and nutritional damage and to reduce duration and severity of diarrhoeal episodes. The recommended therapeutic regimen is to provide oral rehydration solutions (ORS) and to continue feeding. Although ORS effectively mitigates dehydration, it has no effect on the duration, severity, or frequency of diarrhoeal episodes. Adjuvant therapy with micronutrients, probiotics, or antidiarrhoeal agents may thus be useful. The WHO recommends the use of zinc tablets in association with ORS. The ESPGHAN/ESPID treatment guidelines consider the use of racecadotril, diosmectite, or probiotics as possible adjunctive therapy to ORS. Only racecadotril and diosmectite reduce stool output, but no treatment has yet been shown to reduce hospitalisation rate or mortality. Appropriate management with validated treatments may help reduce the health and economic burden of acute diarrhoea in children worldwide. 1. Introduction Diarrhoeal disease is a major public health concern for both developed and developing countries. Acute diarrhoea is a leading cause of child mortality in developing countries, accounting for 1.5–2 million deaths in children under five years [1]. In consequence, the economic impact of the disease and its treatment are of considerable importance. The aim of the present paper is to provide an update on the aetiology, epidemiology, and treatment of acute diarrhoea in children. 2. Definition Acute diarrhoea is defined as the production of three or more watery stools a day for less than 14 days. In nonsevere acute diarrhoea of gastroenteritic origin, these stools do not contain visible amounts of blood or mucus. If this occurs, then the appropriate diagnosis is dysentery, which requires specific management. The World Health Organization (WHO) emphasises the importance of parental insight in deciding whether children have diarrhoea or not, and in the first few months of life, a conspicuous change in stool consistency rather than stool frequency must be taken into account [2]. 3. Aetiology of Acute Diarrhoea in Children Acute infectious diarrhoea results from

References

[1]  World Gastrenterology Organisation, Practice Guideline for Acute Diarrhoea, 2008.
[2]  WHO/Unicef Joint Statement, Clinical Management of Acute Diarrhoea, WHO, UNICEF, 2004.
[3]  M. O'Ryan, V. Prado, and L. K. Pickering, “A millennium update on pediatric diarrheal illness in the developing world,” Seminars in Pediatric Infectious Diseases, vol. 16, no. 2, pp. 125–136, 2005.
[4]  S. Y. Chen and C. H. Chiu, “Worldwide molecular epidemiology of norovirus infection,” Paediatrics and International Child Health, vol. 32, no. 3, pp. 128–131, 2012.
[5]  A. de Rougemont, K. Ambert-Balay, G. Belliot, and P. Pothier, “Norovirus infections: an overview,” Medecine/Sciences, vol. 26, no. 1, pp. 73–78, 2010.
[6]  S. G. Morillo and C. T. Mdo, “Norovirus: an overview,” Revista da Associa??o Médica Brasileira, vol. 57, no. 4, pp. 453–458, 2011.
[7]  H. L. Koo, N. Ajami, R. L. Atmar, H. L. DuPont, and Noroviruses:, “The leading cause of gastroenteritis worldwide,” Discovery Medicine, vol. 10, no. 50, pp. 61–70, 2010.
[8]  M. Soriano-Gabarró, J. Mrukowicz, T. Vesikari, and T. Verstraeten, “Burden of rotavirus disease in European Union countries,” Pediatric Infectious Disease Journal, vol. 25, no. 1, supplement, pp. S7–S11, 2006.
[9]  U. D. Parashar, A. Burton, C. Lanata et al., “Global mortality associated with rotavirus disease among children in 2004,” Journal of Infectious Diseases, vol. 200, supplement 1, pp. S9–S15, 2009.
[10]  N. M. Thielman and R. L. Guerrant, “Acute infectious diarrhea,” The New England Journal of Medicine, vol. 350, no. 1, pp. 38–47, 2004.
[11]  N. Thapar and I. R. Sanderson, “Diarrhoea in children: an interface between developing and developed countries,” The Lancet, vol. 363, no. 9409, pp. 641–653, 2004.
[12]  F. R. Velazquez, H. Garcia-Lozano, E. Rodriguez, et al., “Diarrhea morbidity and mortality in Mexican children: impact of rotavirus disease,” Pediatric Infectious Disease Journal, vol. 23, no. 10, supplement, pp. S149–S155, 2004.
[13]  J. E. Tate, A. H. Burton, C. Boschi-Pinto, et al., “2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis,” The Lancet Infectious Diseases, vol. 12, no. 2, pp. 136–141, 2012.
[14]  B. A. Lopman, M. H. Reacher, Y. van Duijnhoven, F. X. Hanon, D. Brown, and M. Koopmans, “Viral gastroenteritis outbreaks in Europe, 1995–2000,” Emerging Infectious Diseases, vol. 9, no. 1, pp. 90–96, 2003.
[15]  S. Svraka, E. Duizer, H. Vennema et al., “Etiological role of viruses in outbreaks of acute gastroenteritis in The Netherlands from 1994 through 2005,” Journal of Clinical Microbiology, vol. 45, no. 5, pp. 1389–1394, 2007.
[16]  M. P. Girard, D. Steele, C. L. Chaignat, and M. P. Kieny, “A review of vaccine research and development: Human enteric infections,” Vaccine, vol. 24, no. 15, pp. 2732–2750, 2006.
[17]  C. Wanke and R. Guerrant, “Infectious gastroenteritis,” in Medicine for the Practicing Physician, J. Hurst, Ed., p. 340, Appleton & Lange, Stamford, Conn, USA, 1996.
[18]  A. L. Rice, L. Sacco, A. Hyder, and R. E. Black, “Malnutrition as an underlying cause of childhood deaths associated with infectious diseases in developing countries,” Bulletin of the World Health Organization, vol. 78, no. 10, pp. 1207–1221, 2000.
[19]  World Health Organisation, The Treatment of Diarrhoea. A Manual for Physicians and Other Senior Health Workers, World Health Organisation, Geneva, Switzerland, 2005.
[20]  J. F. Desjeux and M. Heyman, “The acute infectious diarrhoeas as diseases of the intestinal mucosa,” Journal of Diarrhoeal Diseases Research, vol. 15, no. 4, pp. 224–231, 1997.
[21]  N. M. Thielman and R. L. Guerrant, “Pathophysiology of gastrointestinal infections: host defenses versus microbial virulence traits,” in Gastrointestinal Pharmacology and Therapeutics, G. Friedman, E. D. Jacobson, and R. W. McCallum, Eds., pp. 193–200, Lippincott-Raven, Philadelphia, Pa, USA, 1997.
[22]  E. B. Chang, “The pathophysiology of diarrhoea and constipation. The role of water and electrolyte flux,” in Gastrointestinal Pharmacology and Therapeutics, G. Friedman, E. D. Jacobson, and R. W. McCallum, Eds., pp. 153–157, Lippincott-Raven, Philadelphia, Pa, USA, 1997.
[23]  A. C. Casburn-Jones and M. J. G. Farthing, “Management of infectious diarrhoea,” Gut, vol. 53, no. 2, pp. 296–305, 2004.
[24]  World Health Organisation/UNICEF, “WHO child growth standards and the identification of severe acute malnutrition in infants and children,” Joint Statement by the World Health Organization and the United Nations Children’s Fund, WHO and UNICEF, Geneva, Switzerland, 2009.
[25]  J. Bryce, C. Boschi-Pinto, K. Shibuya, and R. E. Black, “WHO estimates of the causes of death in children,” The Lancet, vol. 365, no. 9465, pp. 1147–1152, 2005.
[26]  A. D. Lopez and C. D. Mathers, “Measuring the global burden of disease and epidemiological transitions: 2002—2030,” Annals of Tropical Medicine and Parasitology, vol. 100, no. 5-6, pp. 481–499, 2006.
[27]  UNICEF and World Health Organisation, “Diarrhoea: why children are still dying and what can be done,” 2009.
[28]  B. Lorntz, A. M. Soares, S. R. Moore et al., “Early childhood diarrhea predicts impaired school performance,” Pediatric Infectious Disease Journal, vol. 25, no. 6, pp. 513–520, 2006.
[29]  M. Kosek, C. Bern, and R. L. Guerrant, “The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000,” Bulletin of the World Health Organization, vol. 81, no. 3, pp. 197–204, 2003.
[30]  K. Soares-Weiser, H. Maclehose, I. Ben-Aharon, E. Goldberg, F. Pitan, and N. Cunliffe, “Vaccines for preventing rotavirus diarrhoea: vaccines in use,” Cochrane Database of Systematic Reviews, no. 5, Article ID CD008521, 2010.
[31]  A. T. Curns, C. A. Steiner, M. Barrett, K. Hunter, E. Wilson, and U. D. Parashar, “Reduction in acute gastroenteritis hospitalizations among US children after introduction of rotavirus vaccine: analysis of hospital discharge data from 18 US States,” Journal of Infectious Diseases, vol. 201, no. 11, pp. 1617–1624, 2010.
[32]  J. E. Tate, M. M. Cortese, D. C. Payne et al., “Uptake, impact, and effectiveness of rotavirus vaccination in the United States: review of the first 3 years of postlicensure data,” Pediatric Infectious Disease Journal, vol. 30, no. 1, supplement, pp. S56–S60, 2011.
[33]  C. Yen, J. A. A. Guardado, P. Alberto et al., “Decline in rotavirus hospitalizations and health care visits for childhood diarrhea following rotavirus vaccination in El salvador,” Pediatric Infectious Disease Journal, vol. 30, no. 1, supplement, pp. S6–S10, 2011.
[34]  M. M. Patel, D. Steele, J. R. Gentsch, J. Wecker, R. I. Glass, and U. D. Parashar, “Real-world impact of rotavirus vaccination,” Pediatric Infectious Disease Journal, vol. 30, no. 1, supplement, pp. S1–S5, 2011.
[35]  M. Quintanar-Solares, C. Yen, V. Richardson, M. Esparza-Aguilar, U. D. Parashar, and M. M. Patel, “Impact of rotavirus vaccination on diarrhea-related hospitalizations among children <5 years of age in Mexico,” Pediatric Infectious Disease Journal, vol. 30, no. 1, supplement, pp. S11–S15, 2011.
[36]  B. C. Forsberg, M. G. Petzold, G. Tomson, and P. Allebeck, “Diarrhoea case management in low- and middle-income countries—an unfinished agenda,” Bulletin of the World Health Organization, vol. 85, no. 1, pp. 42–48, 2007.
[37]  J. S. Suh, W. H. Hahn, and B. S. Cho, “Recent advances of oral rehydration therapy (ORT),” Electrolyte Blood Press, vol. 8, no. 2, pp. 82–86, 2010.
[38]  World Health Organisation, Guidelines for the Clinical Investigation of Drugs for the Treatment of Diarrhoea, World Health Organisation, Copenhagen, Denmark, 1984.
[39]  A. Guarino, F. Albano, S. Ashkenazi et al., “European society for paediatric gastroenterology, hepatology, and nutrition/European society for paediatric infectious diseases evidence-based guidelines for the management of acute gastroenteritis in children in Europe,” Journal of Pediatric Gastroenterology and Nutrition, vol. 46, supplement 2, pp. S81–S122, 2008.
[40]  C. P. Larson, S. K. Roy, A. I. Khan, A. S. Rahman, and F. Qadri, “Zinc treatment to under-five children: applications to improve child survival and reduce burden of disease,” Journal of Health, Population and Nutrition, vol. 26, no. 3, pp. 356–365, 2008.
[41]  A. Guarino, F. Albano, S. Ashkenazi et al., “European society for paediatric gastroenterology, hepatology, and nutrition/european society for paediatric infectious diseases evidence-based guidelines for the management of acute gastroenteritis in children in europe: executive summary,” Journal of Pediatric Gastroenterology and Nutrition, vol. 46, no. 5, pp. 619–621, 2008.
[42]  Summary Product Characteristics, IMODIUM—Loperamide 2?Mg capsules, McNeil Products Limited, Maidenhead, UK, 2008.
[43]  J. D. Wood and J. J. Galligan, “Function of opioids in the enteric nervous system,” Neurogastroenterology and Motility, vol. 16, supplement 2, pp. 17–28, 2004.
[44]  C. Regnard, R. Twycross, M. Mihalyo, and A. Wilcock, “Loperamide,” Journal of Pain and Symptom Management, vol. 42, no. 2, pp. 319–323, 2011.
[45]  W. Chen, H. H. Chung, and J. T. Cheng, “Opiate-induced constipation related to activation of small intestine opioid mu2-receptors,” World Journal of Gastroenterology, vol. 18, no. 12, pp. 1391–1396, 2012.
[46]  J. M. Killinger, H. S. Weintraub, and B. L. Fuller, “Human pharmacokinetics and comparative bioavailability of loperamide hydrochloride,” Journal of Clinical Pharmacology, vol. 19, no. 4, pp. 211–218, 1979.
[47]  T. Mellstrand, “Loperamide—an opiate receptor agonist with gastrointestinal motility effects,” Scandinavian Journal of Gastroenterology, Supplement, vol. 22, no. 130, pp. 65–66, 1987.
[48]  S. T. T. Li, D. C. Grossman, and P. Cummings, “Loperamide therapy for acute diarrhea in children: systematic review and meta-analysis,” PLoS Medicine, vol. 4, no. 3, article e98, 2007.
[49]  A. J. Matheson and S. Noble, “Racecadotril,” Drugs, vol. 59, no. 4, pp. 829–835, 2000.
[50]  J. C. Schwartz, S. de la Baume, B. Malfroy et al., “‘Enkephalinase’, a newly characterised dipeptidyl carboxypeptidase: properties and possible role in enkephalinergic transmission,” International Journal of Neurology, vol. 14, no. 2’4, pp. 195–204, 1980.
[51]  B. P. Roques, M. C. Fournie-Zaluski, and E. Soroca, “The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice,” Nature, vol. 288, no. 5788, pp. 286–288, 1980.
[52]  J. C. Schwartz, “Racecadotril: a new approach to the treatment of diarrhoea,” International Journal of Antimicrobial Agents, vol. 14, no. 1, pp. 75–79, 2000.
[53]  M. Eberlin, T. Muck, and M. C. Michel, “A comprehensive review of the pharmacodynamics, pharmacokinetics, and clinical effects of the neutral endopeptidase inhibitor racecadotril,” Frontiers in Pharmacology, vol. 3, article 93, 2012.
[54]  E. Salazar-Lindo, J. Santisteban-Ponce, E. Chea-Woo, and M. Gutierrez, “Racecadotril in the treatment of acute watery diarrhea in children,” The New England Journal of Medicine, vol. 343, no. 7, pp. 463–467, 2000.
[55]  H. Szajewska, M. Ruszczyński, A. Chmielewska, and J. Wieczorek, “Systematic review: racecadotril in the treatment of acute diarrhoea in children,” Alimentary Pharmacology and Therapeutics, vol. 26, no. 6, pp. 807–813, 2007.
[56]  J. P. Cézard, J. P. Chouraqui, J. P. Girardet, and F. Gottrand, “Drug treatment of acute infectious diarrhea in infants and children,” Archives de Pédiatrie, vol. 9, no. 6, pp. 620–628, 2002.
[57]  J. P. Cézard, J. F. Duhamel, M. Meyer et al., “Efficacy and tolerability of racecadotril in acute diarrhea in children,” Gastroenterology, vol. 120, no. 4, pp. 799–805, 2001.
[58]  P. Lehert, G. Chéron, G. A. Calatayud et al., “Racecadotril for childhood gastroenteritis: an individual patient data meta-analysis,” Digestive and Liver Disease, vol. 43, no. 9, pp. 707–713, 2011.
[59]  T. A. Rautenberg, U. Zerwes, D. Foerster, and R. Aultman, “Evaluating the cost utility of racecadotril for the treatment of acute watery diarrhea in children: the RAWD model,” ClinicoEconomics and Outcomes Research, vol. 4, pp. 109–116, 2012.
[60]  FAO/WHO, Guidelines for the Evaluation of Probiotics in Food. Report of A Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, FAO/WHO, London, UK, 2002.
[61]  S. Guandalini, “Probiotics for children with diarrhea: an update,” Journal of clinical gastroenterology, vol. 42, supplement 2, pp. S53–57, 2008.
[62]  H. Szajewska and J. Z. Mrukowicz, “Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials,” Journal of Pediatric Gastroenterology and Nutrition, vol. 33, supplement 2, pp. S17–S25, 2001.
[63]  H. Szajewska, A. Skórka, M. Ruszczyński, and D. Gieruszczak-Bia?ek, “Meta-analysis: Lactobacillus GG for treating acute diarrhoea in children,” Alimentary Pharmacology and Therapeutics, vol. 25, no. 8, pp. 871–881, 2007.
[64]  C. W. van Niel, C. Feudtner, M. M. Garrison, and D. A. Christakis, “Lactobacillus therapy for acute infectious diarrhea in children: a meta-analysis,” Pediatrics, vol. 109, no. 4, pp. 678–684, 2002.
[65]  J. S. Huang, A. Bousvaros, J. W. Lee, A. Diaz, and E. J. Davidson, “Efficacy of probiotic use in acute diarrhea in children: a meta-analysis,” Digestive Diseases and Sciences, vol. 47, no. 11, pp. 2625–2634, 2002.
[66]  S. J. Allen, E. G. Martinez, G. V. Gregorio, and L. F. Dans, “Probiotics for treating acute infectious diarrhoea,” Cochrane Database of Systematic Reviews, no. 11, Article ID CD003048, 2010.
[67]  S. J. Allen, B. Okoko, E. Martinez, G. Gregorio, and L. F. Dans, “Probiotics for treating infectious diarrhoea,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD003048, 2004.
[68]  H. Szajewska and A. Skórka, “Saccharomyces boulardii for treating acute gastroenteritis in children: updated meta-analysis of randomized controlled trials,” Alimentary Pharmacology and Therapeutics, vol. 30, no. 9, pp. 960–961, 2009.
[69]  H. Szajewska, A. Skórka, and M. Dylag, “Meta-analysis: Saccharomyces boulardii for treating acute diarrhoea in children,” Alimentary Pharmacology and Therapeutics, vol. 25, no. 3, pp. 257–264, 2007.
[70]  H. Szajewska, P. Dziechciarz, and J. Mrukowicz, “Meta-analysis: smectite in the treatment of acute infectious diarrhoea in children,” Alimentary Pharmacology and Therapeutics, vol. 23, no. 2, pp. 217–227, 2006.
[71]  M. R. Oggioni, G. Pozzi, P. Galieni, P. E. Valensin, and C. Bigazzi, “Recurrent septicemia in an immunocompromised patient due to probiotic strains of Bacillus subtilis,” Journal of Clinical Microbiology, vol. 36, no. 1, pp. 325–326, 1998.
[72]  F. H. Kayser, “Safety aspects of enterococci from the medical point of view,” International Journal of Food Microbiology, vol. 88, no. 2-3, pp. 255–262, 2003.
[73]  M. Egerv?rn, H. Lindmark, J. Olsson, and S. Roos, “Transferability of a tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans,” Antonie van Leeuwenhoek, vol. 97, no. 2, pp. 189–200, 2010.
[74]  A. S. Hummel, C. Hertel, W. H. Holzapfel, and C. M. A. P. Franz, “Antibiotic resistances of starter and probiotic strains of lactic acid bacteria,” Applied and Environmental Microbiology, vol. 73, no. 3, pp. 730–739, 2007.
[75]  U.S. Geological Survey, A Laboratory Manual for X-Ray Powder Diffraction, Smectite Group, 2001, http://pubs.usgs.gov/of/2001/of01-041/htmldocs/clays/smc.htm.
[76]  S. W. Bailey, “Summary of recommendations of AIPEA nomenclature committee on clay minerals,” Clay Minerals, vol. 65, pp. 1–7, 1980.
[77]  C. Dupont and B. Vernisse, “Anti-diarrheal effects of diosmectite in the treatment of acute diarrhea in children: a review,” Pediatric Drugs, vol. 11, no. 2, pp. 89–99, 2009.
[78]  J. S. Weese, N. M. Cote, and R. V. G. deGannes, “Evaluation of in vitro properties of di-tri-octahedral smectite on clostridial toxins and growth,” Equine Veterinary Journal, vol. 35, no. 7, pp. 638–641, 2003.
[79]  J. Frexinos, J. M. Suduca, and B. Schatz, “Effects of smectite on expired hydrogen concentration,” Gastroenterologie Clinique et Biologique, vol. 10, no. 6-7, pp. 526–527, 1986.
[80]  R. Dahan, B. Schatz, J. P. Isal, and C. Caulin, “Effects of smectite on the gastric difference induced by aspirin in man,” Gastroenterologie Clinique et Biologique, vol. 8, no. 11, pp. 878–879, 1984.
[81]  C. Dupont, J. L. Moreno, E. Barau, K. Bargaoui, E. Thiane, and O. Plique, “Effect of diosmectite on intestinal permeability changes in acute diarrhea: a double-blind placebo-controlled trial,” Journal of Pediatric Gastroenterology and Nutrition, vol. 14, no. 4, pp. 413–419, 1992.
[82]  R. González, F. S. de Medina, O. Martínez-Augustin et al., “Anti-inflammatory effect of diosmectite in hapten-induced colitis in the rat,” British Journal of Pharmacology, vol. 141, no. 6, pp. 951–960, 2004.
[83]  L. Mahraoui, M. Heyman, O. Plique, M. T. Droy-Lefaix, and J. F. Desjeux, “Apical effect of diosmectite on damage to the intestinal barrier induced by basal tumour necrosis factor-α,” Gut, vol. 40, no. 3, pp. 339–343, 1997.
[84]  C. Dupont, J. L. K. Foo, P. Garnier, N. Moore, H. Mathiex-Fortunet, and E. Salazar-Lindo, “Oral diosmectite reduces stool output and diarrhea duration in children with acute watery diarrhea,” Clinical Gastroenterology and Hepatology, vol. 7, no. 4, pp. 456–462, 2009.
[85]  “Meeting of the immunization strategic advisory group of experts, April 2009—conclusions and recommendations,” Weekly Epidemiological Record, vol. 84, no. 23, pp. 220–236, 2009.
[86]  G. E. Armah, S. O. Sow, R. F. Breiman et al., “Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial,” The Lancet, vol. 376, no. 9741, pp. 606–614, 2010.
[87]  K. Zaman, D. D. Anh, J. C. Victor et al., “Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in Asia: a randomised, double-blind, placebo-controlled trial,” The Lancet, vol. 376, no. 9741, pp. 615–623, 2010.
[88]  S. A. Madhi, N. A. Cunliffe, D. Steele et al., “Effect of human rotavirus vaccine on severe diarrhea in African infants,” The New England Journal of Medicine, vol. 362, no. 4, pp. 289–298, 2010.
[89]  T. Vesikari, A. Karvonen, R. Prymula et al., “Efficacy of human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in European infants: randomised, double-blind controlled study,” The Lancet, vol. 370, no. 9601, pp. 1757–1763, 2007.
[90]  G. M. Ruiz-Palacios, I. Pérez-Schael, F. R. Velázquez et al., “Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis,” The New England Journal of Medicine, vol. 354, no. 1, pp. 11–22, 2006.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal