All Title Author
Keywords Abstract

Evidence of Bacterial Biofilms among Infected and Hypertrophied Tonsils in Correlation with the Microbiology, Histopathology, and Clinical Symptoms of Tonsillar Diseases

DOI: 10.1155/2013/408238

Full-Text   Cite this paper   Add to My Lib


Diseases of the tonsils are becoming more resistant to antibiotics due to the persistence of bacteria through the formation of biofilms. Therefore, understanding the microbiology and pathophysiology of such diseases represent an important step in the management of biofilm-related infections. We have isolated the microorganisms, evaluated their antimicrobial susceptibility, and detected the presence of bacterial biofilms in tonsillar specimens in correlation with the clinical manifestations of tonsillar diseases. Therefore, a total of 140 palatine tonsils were collected from 70 patients undergoing tonsillectomy at University Malaya Medical Centre. The most recovered isolate was Staphylococcus aureus (39.65%) followed by Haemophilus influenzae (18.53%). There was high susceptibility against all selected antibiotics except for cotrimoxazole. Bacterial biofilms were detected in 60% of patients and a significant percentage of patients demonstrated infection manifestation rather than obstruction. In addition, an association between clinical symptoms like snore, apnea, nasal obstruction, and tonsillar hypertrophy was found to be related to the microbiology of tonsils particularly to the presence of biofilms. In conclusion, evidence of biofilms in tonsils in correlation with the demonstrated clinical symptoms explains the recalcitrant nature of tonsillar diseases and highlights the importance of biofilm’s early detection and prevention towards better therapeutic management of biofilm-related infections. 1. Introduction The ear, nose, and throat (ENT) represent a natural habitat for a broad range of microorganisms such as commensal bacteria as well as potential pathogens [1]. However, these bacteria can sometimes find their way to overcome the defense barriers of such locations and establish chronic infections that poses a challenge to both medical practice and healthcare system [2]. Infections of the ENT such as tonsillitis are diseases that occur with high frequency [3]. During the past decades, efforts have been made to manage the infectious diseases of tonsils [4]. It has been reported that the impact of tonsillar diseases may not only affect the tonsils alone but it can reach other related anatomic structures like the paranasal sinus, upper aerodigestive tract, and Eustachian tube-middle ear complex [4]. Thus understanding the microbiology and pathophysiology of such diseases represents an important step in the management of biofilm-related infections. Chronic infections of the ear, nose, and throat are becoming more resistant to common antimicrobial


[1]  J. á. García-Rodríguez and M. J. Fresnadillo Martínez, “Dynamics of nasopharyngeal colonization by potential respiratory pathogens,” Journal of Antimicrobial Chemotherapy, vol. 50, supplement S2, pp. 59–73, 2002.
[2]  D. P. Morris, “Bacterial biofilm in upper respiratory tract infections,” Current Infectious Disease Reports, vol. 9, no. 3, pp. 186–192, 2007.
[3]  N. Yamanaka, “Moving towards a new Era in the research of tonsils and mucosal barriers,” Advances in Oto-Rhino-Laryngology, vol. 72, pp. 6–19, 2011.
[4]  M. Bista, R. C. M. Amatya, and P. Basnet, “Tonsillar microbial flora: a comparison of infected and noninfected tonsils,” Kathmandu University Medical Journal, vol. 4, no. 13, pp. 18–21, 2006.
[5]  P. V. Vlastarakos, T. P. Nikolopoulos, P. Maragoudakis, A. Tzagaroulakis, and E. Ferekidis, “Biofilms in ear, nose, and throat infections: how important are they?” The Laryngoscope, vol. 117, no. 4, pp. 668–673, 2007.
[6]  R. E. Kania, G. E. M. Lamers, M. J. Vonk et al., “Demonstration of bacterial cells and glycocalyx in biofilms on human tonsils,” Archives of Otolaryngology, vol. 133, no. 2, pp. 115–121, 2007.
[7]  K. W. Bayles, “The biological role of death and lysis in biofilm development,” Nature Reviews Microbiology, vol. 5, no. 9, pp. 721–726, 2007.
[8]  A. Seminara, T. E. Angelini, J. N. Wilking et al., “Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 4, pp. 1116–1121, 2012.
[9]  R. R. Diaz, S. Picciafuoco, M. G. Paraje et al., “Relevance of biofilms in pediatric tonsillar disease,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 30, no. 12, pp. 1503–1509, 2011.
[10]  C. Potera, “Forging a link between biofilms and disease,” Science, vol. 283, no. 5409, pp. 1837–1839, 1999.
[11]  C. A. Fux, J. W. Costerton, P. S. Stewart, and P. Stoodley, “Survival strategies of infectious biofilms,” Trends in Microbiology, vol. 13, no. 1, pp. 34–40, 2005.
[12]  J. C. Nickel, I. Ruseska, J. B. Wright, and J. W. Costerton, “Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material,” Antimicrobial Agents and Chemotherapy, vol. 27, no. 4, pp. 619–624, 1985.
[13]  M. El-Azizi, S. Rao, T. Kanchanapoom, and N. Khardori, “In vitro activity of vancomycin, quinupristin/dalfopristin, and linezolid against intact and disrupted biofilms of staphylococci,” Annals of Clinical Microbiology and Antimicrobials, vol. 4, article 2, 2005.
[14]  R. D. Wolcott and G. D. Ehrlich, “Biofilms and chronic infections,” Journal of the American Medical Association, vol. 299, no. 22, pp. 2682–2684, 2008.
[15]  J. N. Palmer, “Bacterial biofilms: do they play a role in chronic sinusitis?” Otolaryngologic Clinics of North America, vol. 38, no. 6, pp. 1193–1201, 2005.
[16]  I. J. Nixon and B. J. G. Bingham, “The impact of methicillin-resistant Staphylococcus aureus on ENT practice,” The Journal of Laryngology and Otology, vol. 120, no. 9, pp. 713–717, 2006.
[17]  I. Brook, “Antibiotic resistance of oral anaerobic bacteria and their effect on the management of upper respiratory tract and head and neck infections,” Seminars in Respiratory Infections, vol. 17, no. 3, pp. 195–203, 2002.
[18]  R. A. Chole and B. T. Faddis, “Anatomical evidence of microbial biofilms in tonsillar tissues: a possible mechanism to explain chronicity,” Archives of Otolaryngology, vol. 129, no. 6, pp. 634–636, 2003.
[19]  A. H. Messner and R. Pelayo, “Pediatric sleep-related breathing disorders,” The American Journal of Otolaryngology, vol. 21, no. 2, pp. 98–107, 2000.
[20]  I. Brook, P. Yocum, and P. A. Foote Jr., “Changes in the core tonsillar bacteriology of recurrent tonsillitis: 1977- 1993,” Clinical Infectious Diseases, vol. 21, no. 1, pp. 171–176, 1995.
[21]  I. Brook, “Failure of penicillin to eradicate group A beta-hemolytic streptococci tonsillitis: causes and management,” Journal of Otolaryngology, vol. 30, no. 6, pp. 324–329, 2001.
[22]  A. Jain and A. Agarwal, “Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci,” Journal of Microbiological Methods, vol. 76, no. 1, pp. 88–92, 2009.
[23]  R. M. Donlan and J. W. Costerton, “Biofilms: survival mechanisms of clinically relevant microorganisms,” Clinical Microbiology Reviews, vol. 15, no. 2, pp. 167–193, 2002.
[24]  A. Oliveira and M. D. L. R. S. Cunha, “Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci,” BMC Research Notes, vol. 3, article 260, 2010.
[25]  D. H. Darrow and C. Siemens, “Indications for tonsillectomy and adenoidectomy,” The Laryngoscope, vol. 112, supplement S100, pp. 6–10, 2002.
[26]  D. Gozal, “Obstructive sleep apnea in children,” Minerva Pediatrica, vol. 52, no. 11, pp. 629–639, 2000.
[27]  J. J. Kuhn, I. Brook, C. L. Waters, L. W. P. Church, D. A. Bianchi, and D. H. Thompson, “Quantitative bacteriology of tonsils removed from children with tonsillitis hypertrophy and recurrent tonsillitis with and without hypertrophy,” Annals of Otology, Rhinology and Laryngology, vol. 104, no. 8, pp. 646–652, 1995.
[28]  A. Loganathan, U. D. Arumainathan, and R. Raman, “Comparative study of bacteriology in recurrent tonsillitis among children and adults,” Singapore Medical Journal, vol. 47, no. 4, pp. 271–275, 2006.
[29]  M. Greenfeld, R. Tauman, A. DeRowe, and Y. Sivan, “Obstructive sleep apnea syndrome due to adenotonsillar hypertrophy in infants,” International Journal of Pediatric Otorhinolaryngology, vol. 67, no. 10, pp. 1055–1060, 2003.
[30]  N. F. Weir, “Clinical interpretation of tonsillar size,” The Journal of Laryngology and Otology, vol. 86, no. 11, pp. 1137–1144, 1972.
[31]  L. Brodsky, “Modern assessment of tonsils and adenoids,” Pediatric Clinics of North America, vol. 36, no. 6, pp. 1551–1569, 1989.
[32]  M. Al Ahmary, A. Al Mastour, and W. Ghnnam, “The microbiology of tonsils in Khamis civil hospital, Saudi Arabia,” ISRN Otolaryngology, vol. 2012, Article ID 813581, 3 pages, 2012.
[33]  C. T. Sasaki and N. Koss, “Chronic bacterial tonsillitis: fact or fiction,” Otolaryngology, vol. 86, no. 6, part 1, pp. 858–864, 1978.
[34]  CLSI, Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data, Approved Guideline, Clinical Laboratory and Standards Institute (CLSI), Wayne, Pa, USA, 3rd edition, 2009.
[35]  CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, Clinical and Laboratory Standards Institute (CLSI), Wayne, Pa, USA, 2009.
[36]  C. J. Hochstim, J. Y. Choi, D. Lowe, R. Masood, and D. H. Rice, “Biofilm detection with hematoxylin-eosin staining,” Archives of Otolaryngology, vol. 136, no. 5, pp. 453–456, 2010.
[37]  S. Alasil, R. Omar, S. Ismail, M. Y. Yusof, and M. Ameen, “Bacterial identification and antibiotic susceptibility patterns of Staphyloccocus aureus isolates from patients undergoing tonsillectomy in Malaysian University Hospital,” African Journal of Microbiology Research, vol. 5, no. 27, pp. 4748–4752, 2011.
[38]  I. H. Kielmovitch, G. Keleti, C. D. Bluestone, E. R. Wald, and C. Gonzalez, “Microbiology of obstructive tonsillar hypertrophy and recurrent tonsillitis,” Archives of Otolaryngology, vol. 115, no. 6, pp. 721–724, 1989.
[39]  G. Almadori, L. Bastianini, F. Bistoni, G. Paludetti, and M. Rosignoli, “Microbial flora of surface versus core tonsillar cultures in recurrent tonsillitis in children,” International Journal of Pediatric Otorhinolaryngology, vol. 15, no. 2, pp. 157–162, 1988.
[40]  I. Brook, P. Yocum, and K. Shah, “Surface vs core-tonsillar aerobic and anaerobic flora in recurrent tonsillitis,” Journal of the American Medical Association, vol. 244, no. 15, pp. 1696–1698, 1980.
[41]  G. Rosen, J. Samuel, and I. Vered, “Surface tonsillar microflora versus deep tonsillar microflora in recurrent acute tonsillitis,” The Journal of Laryngology and Otology, vol. 91, no. 10, pp. 911–913, 1977.
[42]  M. Gul, E. Okur, P. Ciragil, I. Yildirim, M. Aral, and M. Akif Kilic, “The comparison of tonsillar surface and core cultures in recurrent tonsillitis,” The American Journal of Otolaryngology, vol. 28, no. 3, pp. 173–176, 2007.
[43]  L. Brodsky, L. Moore, J. F. Stanievich, and P. L. Ogra, “The immunology of tonsils in children: The effect of bacterial load on the presence of B- and T-cell subsets,” The Laryngoscope, vol. 98, no. 1, pp. 93–98, 1988.
[44]  C. W. Gross and S. E. Harrison, “Tonsils and adenoids,” Pediatrics Reviews, vol. 21, no. 3, pp. 75–78, 2000.
[45]  W. E. Sadoh, A. E. Sadoh, A. O. Oladipo, and O. O. Okunola, “Bacterial isolates of tonsillitis and pharyngitis in a paediatric casualty setting,” Journal of Medicine and Biomedical Research, vol. 7, no. 1, pp. 37–44, 2008.
[46]  E. M. Brown and P. Thomas, “Fusidic acid resistance in Staphylococcus aureus isolates,” The Lancet, vol. 359, no. 9308, p. 803, 2002.
[47]  A. Norazah, V. K. E. Lim, Y. T. Koh et al., “Molecular fingerprinting of fusidic acid- and rifampicin-resistant strains of methicillin-resistant Staphylococcus aureus (MRSA) from Malaysian hospitals,” Journal of Medical Microbiology, vol. 51, no. 12, pp. 1113–1116, 2002.
[48]  L. B. Rice, “Progress and challenges in implementing the research on ESKAPE pathogens,” Infection Control and Hospital Epidemiology, vol. 31, supplement 1, pp. S7–S10, 2010.
[49]  S. E. Holm and E. Grahn, “Bacterial interference in streptococal tonsillitis,” Scandinavian Journal of Infectious Diseases, vol. 39, pp. 73–78, 1983.
[50]  I. Brook and A. E. Gober, “Long-term effects on the nasopharyngeal flora of children following antimicrobial therapy of acute otitis media with cefdinir or amoxycillin-clavulanate,” Journal of Medical Microbiology, vol. 54, part 6, pp. 553–556, 2005.
[51]  H. Ceri, M. E. Olson, C. Stremick, R. R. Read, D. Morck, and A. Buret, “The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms,” Journal of Clinical Microbiology, vol. 37, no. 6, pp. 1771–1776, 1999.
[52]  M. E. Olson, H. Ceri, D. W. Morck, A. G. Buret, and R. R. Read, “Biofilm bacteria: formation and comparative susceptibility to antibiotics,” Canadian Journal of Veterinary Research, vol. 66, no. 2, pp. 86–92, 2002.
[53]  A. R. Dell'Aringa, A. J. C. Juares, C. de Melo, J. C. Nardi, K. Kobari, and R. M. Perches Filbo, “Histopathologic analysis of the adenotonsilectomy specimens from January 2001 to May 2003,” Revista Brasileira de Otorrinolaringologia, vol. 71, no. 1, pp. 18–22, 2005.
[54]  S. M. Pransky, J. I. Feldman, D. B. Kearns, A. B. Seid, and G. F. Billman, “Actinomycosis in obstructive tonsillar hypertrophy and recurrent tonsillitis,” Archives of Otolaryngology, vol. 117, no. 8, pp. 883–885, 1991.
[55]  J. B. Surow, S. D. Handler, S. A. Telian, G. R. Fleisher, and C. C. Baranak, “Bacteriology of tonsil surface and core in children,” The Laryngoscope, vol. 99, no. 3, pp. 261–266, 1989.
[56]  M. A. Richardson, “Sore throat, tonsillitis and adenoiditis,” Medical Clinics of North America, vol. 83, no. 1, pp. 75–83, 1999.
[57]  A. Stjernquist-Desatnik and E. Holst, “Tonsillar microbial flora: comparison of recurrent tonsillitis and normal tonsils,” Acta Oto-Laryngologica, vol. 119, no. 1, pp. 102–106, 1999.
[58]  H. Akiyama, T. Hamada, W.-K. Huh, O. Yamasaki, T. Oono, and K. Iwatsuki, “Confocal laser scanning microscopic observation of glycocalyx production by Staphylococcus aureus in mouse skin: does S. aureus generally produce a biofilm on damaged skin?” British Journal of Dermatology, vol. 147, no. 5, pp. 879–885, 2002.
[59]  P. S. Stewart and J. W. Costerton, “Antibiotic resistance of bacteria in biofilms,” The Lancet, vol. 358, no. 9276, pp. 135–138, 2001.
[60]  J. H. Woo, S. T. Kim, I. G. Kang, J. H. Lee, H. E. Cha, and D. Y. Kim, “Comparison of tonsillar biofilms between patients with recurrent tonsillitis and a control group,” Acta Otolaryngologica, vol. 132, no. 10, pp. 1115–1120, 2012.
[61]  K. A. Al-Mazrou and A. S. Al-Khattaf, “Adherent biofilms in adenotonsillar diseases in children,” Archives of Otolaryngology, vol. 134, no. 1, pp. 20–23, 2008.
[62]  P. Ogra and R. Welliver Sr., “Effects of early environment on mucosal immunologic homeostasis, subsequent immune responses and disease outcome,” Nestle Nutrition Workshop Series: Pediatric Program, vol. 61, pp. 145–181, 2008.
[63]  Y. H. Lai and M. D'Souza, “Microparticle transport in the human intestinal M cell model,” Journal of Drug Targeting, vol. 16, no. 1, pp. 36–42, 2008.
[64]  M. E. Zernotti, N. A. Villegas, M. R. Revol et al., “Evidence of bacterial biofilms in nasal polyposis,” Journal of Investigational Allergology and Clinical Immunology, vol. 20, no. 5, pp. 380–385, 2010.


comments powered by Disqus